最小生成树-Kruskal

最小生成树-Kruskal算法

Kruskal 算法描述

Kruskal算法是基于贪心的思想得到的。我们把所有的边按照权值从小到大排列,接着按照顺序选取每条边,如果这条边的两个端点不属于同一集合,那么就将它们合并,直到所有的点都属于同一个集合位置。而可以用并查集来将端点合并到一个集合内。因此可以说,Kruskal算法是基于并查集的贪心算法。

Kruskal算法编程有以两个关键技术

  • 对边进行排序:可以用STL的sort()函数,排序后,依次把最短的边加入到T中
  • 判断圈,即处理连通性问题。这个问题用并查集简单而高效,并查集是Kruskal算法的绝配

Kruskal 算法流程

对于图G(V,E)

①将图G看做是一个森林,每个顶点为一颗独立的树
②将所有的边加入集合S,即一开始S=E
③从S中取出最短的边(u,v),如果(u,v)不在同一棵树内,则连接u,v合并这两棵树,同时将(u,v)加入边集E’
④重复③直到所有的点都属于同一棵树,边集E’就是一颗最小生成树


例题-洛谷P2330 繁华的都市

题目链接

题目描述

城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。

城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:

  • ①改造的那些道路能够把所有的交叉路口直接或间接的连通起来。
  • ②在满足要求①的情况下,改造的道路尽量少。
  • ③在满足要求①、②的情况下,改造的那些道路中分值最大的道路分值尽量小。

任务:作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。

输入格式

第一行有两个整数n,m表示城市有n个交叉路口,m条道路。

接下来m行是对每条道路的描述,u, v, c表示交叉路口u和v之间有道路相连,分值为c。(1≤n≤300,1≤c≤10000,1≤m≤100000)

输出格式

两个整数s, max,表示你选出了几条道路,分值最大的那条道路的分值是多少。

输入输出样例

输入#1

4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8

输出

3 6

解题思路

模板类的Kruskal算法

Code

#include<bits/stdc++.h>

using namespace std;
const int maxn=1e5+10;

int F[maxn],siz[maxn];
struct Edge{
    int From,To,Value;
}Ed[maxn];
bool cmp(Edge a,Edge b){return a.Value<b.Value;}

//并查集初始化
void Init_Set(){
    for(int i=0;i<maxn;i++){
        F[i]=i;
        siz[i]=0;
    }
}
//并查集查找
int Find(int x){
    if(F[x]==x) return x;
    return F[x]=Find(F[x]);
}
//并查集合并
void Union_Set(int x,int y){
    if((x=Find(x))==(y=Find(y))) return;
    if(siz[x]<siz[y]) F[x]=y;
    else if(siz[x]>siz[y]) F[y]=x;
    else{
        F[x]=y; siz[y]++;
    }
}

int main(){
    int n,m;
    cin>>n>>m;
    Init_Set();
    for(int i=1;i<=m;i++){
        cin>>Ed[i].From>>Ed[i].To>>Ed[i].Value;
    }
    sort(Ed+1,Ed+m+1,cmp);
    int s=0,maxx=0;
    for(int i=1;i<=m;i++){
        if(Find(Ed[i].From)!=Find(Ed[i].To)){
            Union_Set(Ed[i].From,Ed[i].To);
            s++;
            maxx=max(maxx,Ed[i].Value);
        }
        if(s==n-1) break; //判断是否构成环
    }
    cout<<s<<" "<<maxx<<endl;
    return 0;
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页