行为检测(一):openpose、LSTM、TSN、C3D等架构实现或者开源代码总结


✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️

openpose⭐

一:PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface of the training/inference/evaluation, and the dataloader with various data augmentation options for the most popular human pose databases (e.g., the MPII human pose, LSP and FLIC).

LSTM⭐

一:基于LSTM的行为识别

TSN⭐

  • wo-stream 卷积网络对于长范围时间结构的建模无能为力,主要因为它仅仅操作一帧(空间网络)或者操作短片段中的单堆帧(时间网络),因此对时间上下文的访问是有限的。视频级框架TSN可以从整段视频中建模动作。和two-stream一样,TSN也是由空间流卷积网络和时间流卷积网络构成。但不同于two-stream采用单帧或者单堆帧,TSN使用从整个视频中稀疏地采样一系列短片段,每个片段都将给出其本身对于行为类别的初步预测,从这些片段的“共识”来得到视频级的预测结果。在学习过程中,通过迭代更新模型参数来优化视频级预测的损失值(loss value)。

  • 数据集:UCF101:链接:https://gas.graviti.cn/dataset/hello-dataset/UCF101/download

  • 代码链接:https://github.com/yjxiong/tsn-pytorch

C3D⭐

区别

这四种模型在网络结构、数据处理和应用场景等方面存在区别:

  1. PyTorch - Pose:专注于 2D 单人姿态估计,为相关数据库提供训练等接口和数据加载器,适用于人体姿态分析领域,其优势在于对人体姿态的精准识别与定位,在处理人体关节点检测等任务上表现出色。
  2. 基于 LSTM 的行为识别模型:利用 LSTM 处理传感器采集的特定行为数据,主要针对如行走、站立等 6 种行为状态进行识别,适用于基于传感器数据的行为分类场景,擅长处理具有时间序列特征的行为数据,对简单行为的分类有较好效果。
  3. TSN(Temporal Segment Networks):为解决 two - stream 卷积网络时间结构建模问题而设计,从整段视频采样短片段建模,由空间流和时间流卷积网络构成,适用于视频行为识别领域,在处理长视频的行为分析时,能更好地捕捉时间上下文信息,提高识别准确率。
  4. C3D:通过 3D 卷积提取视频时空特征构建网络,能处理连续视频帧,应用于行为识别、场景识别和视频相似度分析等多个领域,其通用性较强,可扩展性好,能适应不同类型的视频数据处理任务,但在特定任务上的精度可能相对其他专门模型略逊一筹。

✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZY_dl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值