300.最长递增子序列
思路:根据递归五部曲进行分析。
1、dp[i]的定义
dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度。
2、递推公式
位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
3、dp[i]的初始化
每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.
4、遍历顺序
dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,从前向后遍历。
j遍历0到i-1,前后遍历都可以,默认习惯 从前向后遍历。
5、举例推导dp数组
代码如下:
class Solution {
public int lengthOfLIS(int[] nums) {
int[] dp=new int[nums.length];
int result=1;
for(int i=0;i<nums.length;i++) dp[i]=1;
for(int i=1;i<nums.length;i++){
for(int j=0;j<i;j++){
if(nums[i]>nums[j]) dp[i]=Math.max(dp[i],dp[j]+1);
}
if(dp[i]>result) result=dp[i];
}
return result;
}
}
674. 最长连续递增序列
思路:这个题目跟上一题的区别就在连续,所以只需要更改递推公式即可。
位置i的最长连续升序子序列等于i-1最长连续升序子序列 + 1 的最大值。
if (nums[i] > nums[i-1]) dp[i] = dp[i-1] + 1;
代码如下:
class Solution {
public int findLengthOfLCIS(int[] nums) {
int[] dp=new int[nums.length];
int result=1;
for(int i=0;i<nums.length;i++) dp[i]=1;
for(int i=1;i<nums.length;i++){
if(nums[i]>nums[i-1]) dp[i]=dp[i-1]+1;
if(dp[i]>result) result=dp[i];
}
return result;
}
}
其实也可以暴力求解,计算每一个位置开始的最长连续递增序列长度,记录最长的结果。
718. 最长重复子数组
思路:定义二维数组dp[i][j],i,j分别遍历A、B两个数组。
1、确定dp数组(dp table)以及下标的含义
dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。遍历dp[i][j]的时候i 和 j从1开始。
2、确定递推公式
根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。
即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;
3、dp数组如何初始化
根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的。 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1,dp[i][0] 和dp[0][j]初始化为0。
举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。
4、确定遍历顺序
双层循环,都可以从前往后遍历。
5、举例推导dp数组
代码如下:
class Solution {
public int findLength(int[] nums1, int[] nums2) {
int[][] dp=new int[nums1.length+1][nums2.length+1];
int result=0;
for(int i=1;i<=nums1.length;i++){
for(int j=1;j<=nums2.length;j++){
if(nums1[i-1]==nums2[j-1]) dp[i][j]=dp[i-1][j-1]+1;
if(dp[i][j]>result) result=dp[i][j];
}
}
return result;
}
}
可以使用滚动数组将二维数组压缩为一维数组,这样内层循环需要从后往前遍历,以防覆盖。
class Solution {
public int findLength(int[] nums1, int[] nums2) {
int[] dp=new int[nums2.length+1];
int result=0;
for(int i=1;i<=nums1.length;i++){
for(int j=nums2.length;j>0;j--){
if(nums1[i-1]==nums2[j-1]) dp[j]=dp[j-1]+1;
else dp[j]=0;
if(dp[j]>result) result=dp[j];
}
}
return result;
}
}