leetcode 刷题day41动态规划Part10(300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组)

300.最长递增子序列

思路:根据递归五部曲进行分析。

1、dp[i]的定义
dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度。

2、递推公式
位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

3、dp[i]的初始化
每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

4、遍历顺序
dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,从前向后遍历。
j遍历0到i-1,前后遍历都可以,默认习惯 从前向后遍历。

5、举例推导dp数组

代码如下:

class Solution {
    public int lengthOfLIS(int[] nums) {
        int[] dp=new int[nums.length];
        int result=1;
        for(int i=0;i<nums.length;i++) dp[i]=1;
        for(int i=1;i<nums.length;i++){
            for(int j=0;j<i;j++){
                if(nums[i]>nums[j]) dp[i]=Math.max(dp[i],dp[j]+1);
            }
            if(dp[i]>result) result=dp[i];
        }
        return result;
    }
}

674. 最长连续递增序列

思路:这个题目跟上一题的区别就在连续,所以只需要更改递推公式即可。

位置i的最长连续升序子序列等于i-1最长连续升序子序列 + 1 的最大值。
if (nums[i] > nums[i-1]) dp[i] = dp[i-1] + 1;

代码如下:

class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int[] dp=new int[nums.length];
        int result=1;
        for(int i=0;i<nums.length;i++) dp[i]=1;
        for(int i=1;i<nums.length;i++){
            if(nums[i]>nums[i-1]) dp[i]=dp[i-1]+1;
            if(dp[i]>result) result=dp[i];
        } 
        return result;
    }
}

其实也可以暴力求解,计算每一个位置开始的最长连续递增序列长度,记录最长的结果。

718. 最长重复子数组

思路:定义二维数组dp[i][j],i,j分别遍历A、B两个数组。

1、确定dp数组(dp table)以及下标的含义
dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。遍历dp[i][j]的时候i 和 j从1开始。

2、确定递推公式
根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。
即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

3、dp数组如何初始化
根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的。 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1,dp[i][0] 和dp[0][j]初始化为0。

举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

4、确定遍历顺序
双层循环,都可以从前往后遍历。

5、举例推导dp数组

代码如下:

class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int[][] dp=new int[nums1.length+1][nums2.length+1];
        int result=0;
        for(int i=1;i<=nums1.length;i++){
            for(int j=1;j<=nums2.length;j++){
                if(nums1[i-1]==nums2[j-1]) dp[i][j]=dp[i-1][j-1]+1;
                if(dp[i][j]>result) result=dp[i][j];
            }
        }
        return result;
    }
}

可以使用滚动数组将二维数组压缩为一维数组,这样内层循环需要从后往前遍历,以防覆盖。

class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int[] dp=new int[nums2.length+1];
        int result=0;
        for(int i=1;i<=nums1.length;i++){
            for(int j=nums2.length;j>0;j--){
                if(nums1[i-1]==nums2[j-1]) dp[j]=dp[j-1]+1;
                else dp[j]=0;
                if(dp[j]>result) result=dp[j];
            }
        }
        return result;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值