1、猴子分桃
题目描述:
老猴子辛苦了一辈子,给那群小猴子们留下了一笔巨大的财富——一大堆桃子。老猴子决定把这些桃子分给小猴子。
第一个猴子来了,它把桃子分成五堆,五堆一样多,但还多出一个。它把剩下的一个留给老猴子,自己拿走其中的一堆。
第二个猴子来了,它把桃子分成五堆,五堆一样多,但又多出一个。它把多出的一个留给老猴子,自己拿走其中的一堆。
后来的小猴子都如此照办。最后剩下的桃子全部留给老猴子。
这里有n只小猴子,请你写个程序计算一下在开始时至少有多少个桃子,以及最后老猴子最少能得到几个桃子。
输入描述:
输入包括多组测试数据。
每组测试数据包括一个整数n(1≤n≤20)。
输入以0结束,该行不做处理。
输出描述:
每组测试数据对应一行输出。
包括两个整数a,b。
分别代表开始时最小需要的桃子数,和结束后老猴子最少能得到的桃子数。
示例:
输入:
5
1
0
输出:
3121 1025
1 1
解题思路:
我们改变一下原题规则:假设一开始桃子个数为x,我们人为添加4个桃子之后总桃子数变为x+4。这样每次刚好可以分成5堆,不考虑每次拿完后给老猴子一个,最终剩下的桃子-4依然等于原题场景的结果。
完整代码:
#include <iostream>
#include <math.h> using namespace std;
using namespace std;
int main()
{
int n = 0;
while(cin>>n && n!=0)
{
// 题目要求输出整数,而pow返回值类型为double
// 5的20次方数值超过int的大小,所以强转为long
cout<<(long)pow(5, n)-4<<' '<<(long)pow(4, n)+n-4<<endl;
}
return 0;
}
性能分析:
- 时间复杂度:O(1)。
- 空间复杂度:O(1)。
2、有假币
题目描述:
居然有假币! 现在猪肉涨了,但是农民的工资却不见涨啊,没钱怎么买猪肉啊。nowcoder这就去买猪肉,结果找来的零钱中有假币!!!可惜nowcoder 一不小心把它混进了一堆真币里面去了。只知道假币的重量比真币的质量要轻,给你一个天平(天平两端能容纳无限个硬币),请用最快的时间把那个可恶的假币找出来。
输入描述:
1≤n≤2^30,输入0结束程序。
输出描述:
最多要称几次一定能把那个假币找出来?
示例:
输入:
3
12
0
输出:
1
3
解题思路:
对于要称量的硬币,每次称量前分成3份,要求前两份的个数不小于第三份,这样每次称完都可以排除2/3的硬币。
- 如果有一个硬币:最多称量0次,这个硬币就是假币。
- 如果有二个硬币:最多称量1次,轻的那个就是假币。
- 如果有三个硬币:最多称量1次,分成三份(1,1,1),先称量前两份轻的那个就是假币,如果前两份重量相等那么第三份的那个硬币就是假币。
- 如果有四个硬币:最多称量2次,分成三份(2,2,0),首先称量前两份,假币在轻的那两颗硬币里,在对轻的那份称一次得到假币。
- 如果有五个硬币:最多称2次,分成三份(2,2,1),考虑最差情况,首先称前两份,其中一份重量更轻,再单独对那份称量一次得到假币。
通过上面的例子我们可以发现规律:一次称量最多能找到2~3枚硬币中的假币、二次称量最多能找到4 ~ 9枚硬币中的假币,以此类推…
完整代码:
#include <iostream>
using namespace std;
int main()
{
int n = 0;
while(cin>>n && n!=0)
{
int ret = 0;
// 输入的n确定是在int范围内的
// sum每次要乘等3最终会大于n,那么可能会大于int最大范围所以sum类型我们定义为long
long sum = 1;
while(sum < n)
{
++ret;
sum *= 3;
}
cout<<ret<<endl;
}
return 0;
}
性能分析:
- 时间复杂度:O(1)。
- 空间复杂度:O(1)。