【C++】智力题总结

本文介绍了两个信息技术领域的经典问题:猴子分桃和有假币。在猴子分桃问题中,通过数学分析得出开始时至少需要的桃子数和老猴子最少能得到的桃子数。而在有假币问题中,探讨了如何使用天平快速找出假币,揭示了分治策略在解决这类问题中的效率。这两个问题展示了数学和算法在信息技术中的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1、猴子分桃


题目连接

题目描述
老猴子辛苦了一辈子,给那群小猴子们留下了一笔巨大的财富——一大堆桃子。老猴子决定把这些桃子分给小猴子。
第一个猴子来了,它把桃子分成五堆,五堆一样多,但还多出一个。它把剩下的一个留给老猴子,自己拿走其中的一堆。
第二个猴子来了,它把桃子分成五堆,五堆一样多,但又多出一个。它把多出的一个留给老猴子,自己拿走其中的一堆。
后来的小猴子都如此照办。最后剩下的桃子全部留给老猴子。
这里有n只小猴子,请你写个程序计算一下在开始时至少有多少个桃子,以及最后老猴子最少能得到几个桃子。

输入描述
输入包括多组测试数据。
每组测试数据包括一个整数n(1≤n≤20)。
输入以0结束,该行不做处理。

输出描述
每组测试数据对应一行输出。
包括两个整数a,b。
分别代表开始时最小需要的桃子数,和结束后老猴子最少能得到的桃子数。

示例

输入
5
1
0
输出
3121 1025
1 1

解题思路
我们改变一下原题规则:假设一开始桃子个数为x,我们人为添加4个桃子之后总桃子数变为x+4。这样每次刚好可以分成5堆,不考虑每次拿完后给老猴子一个,最终剩下的桃子-4依然等于原题场景的结果。
在这里插入图片描述
完整代码

#include <iostream>    
#include <math.h>                                                                                                     using namespace std;
using namespace std;
                            
int main()         
{                  
  int n = 0;           
  while(cin>>n && n!=0)    
  {                                             
    // 题目要求输出整数,而pow返回值类型为double 
    // 5的20次方数值超过int的大小,所以强转为long           
    cout<<(long)pow(5, n)-4<<' '<<(long)pow(4, n)+n-4<<endl;
  }                                                                 
  return 0;        
}   

性能分析

  • 时间复杂度:O(1)。
  • 空间复杂度:O(1)。

2、有假币


题目连接

题目描述
居然有假币! 现在猪肉涨了,但是农民的工资却不见涨啊,没钱怎么买猪肉啊。nowcoder这就去买猪肉,结果找来的零钱中有假币!!!可惜nowcoder 一不小心把它混进了一堆真币里面去了。只知道假币的重量比真币的质量要轻,给你一个天平(天平两端能容纳无限个硬币),请用最快的时间把那个可恶的假币找出来。

输入描述
1≤n≤2^30,输入0结束程序。

输出描述
最多要称几次一定能把那个假币找出来?

示例

输入
3
12
0
输出
1
3

解题思路
对于要称量的硬币,每次称量前分成3份,要求前两份的个数不小于第三份,这样每次称完都可以排除2/3的硬币。

  • 如果有一个硬币:最多称量0次,这个硬币就是假币。
  • 如果有二个硬币:最多称量1次,轻的那个就是假币。
  • 如果有三个硬币:最多称量1次,分成三份(1,1,1),先称量前两份轻的那个就是假币,如果前两份重量相等那么第三份的那个硬币就是假币。
  • 如果有四个硬币:最多称量2次,分成三份(2,2,0),首先称量前两份,假币在轻的那两颗硬币里,在对轻的那份称一次得到假币。
  • 如果有五个硬币:最多称2次,分成三份(2,2,1),考虑最差情况,首先称前两份,其中一份重量更轻,再单独对那份称量一次得到假币。

通过上面的例子我们可以发现规律:一次称量最多能找到2~3枚硬币中的假币、二次称量最多能找到4 ~ 9枚硬币中的假币,以此类推…

完整代码

#include <iostream>    
using namespace std;    
    
int main()    
{    
  int n = 0;    
  while(cin>>n && n!=0)                                                                                               
  {    
    int ret = 0; 
    // 输入的n确定是在int范围内的
    // sum每次要乘等3最终会大于n,那么可能会大于int最大范围所以sum类型我们定义为long
    long sum = 1;    
    while(sum < n)    
    {    
      ++ret;    
      sum *= 3;    
    }    
    cout<<ret<<endl;    
  }    
  return 0;    
}   

性能分析

  • 时间复杂度:O(1)。
  • 空间复杂度:O(1)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值