专题一:双指针
1. 移动零

题目解析

算法原理

代码编写
// 写法一
class Solution
{
public:
void moveZeroes(vector<int>& nums)
{
// 1、下标初始化
int dest = -1, cur = 0;
// 2、数组划分
while(cur < nums.size())
{
if(nums[cur])
swap(nums[++dest], nums[cur++]);
else
++cur;
}
}
};
// 写法二
class Solution
{
public:
void moveZeroes(vector<int>& nums)
{
for(int dest = -1, cur = 0; cur < nums.size(); ++cur)
if(nums[cur]) // 处理 非0 元素
swap(nums[++dest], nums[cur]);
}
};
/*
- 时间复杂度:O(n)
- 空间复杂度:O(1)
*/
2. 复写零

算法原理

代码编写
class Solution
{
public:
void duplicateZeros(vector<int>& nums)
{
// 1、初始化
int dest = -1, cur = 0, n = nums.size();
// 2、找到最后一个复写的数
while(true)
{
if(nums[cur]) dest += 1;
else dest += 2;
if(dest >= n - 1) break;
++cur;
}
cout << nums[cur] << endl;
// 1.5、预处理 -> 让 dest 的下标有效
if(dest == n)
{
if(nums[cur]) --cur, --dest;
else
{
nums[n - 1] = 0;
dest -= 2;
cur -= 1;
}
}
// 2、双指针从后往前进行复写操作
while(cur >= 0)
{
if(nums[cur]) nums[dest--] = nums[cur--];
else
{
nums[dest--] = 0;
nums[dest--] = 0;
cur--;
}
}
}
};
/*
- 时间复杂度:O(n)
- 空间复杂度:O(1)
*/
3. 快乐数

算法原理

代码编写
class Solution
{
private:
// 计算每个位置上的数字的平方和
inline static int BitSum(int num)
{
int ret = 0;
while(num)
{
int t = num % 10;
ret += t * t;
num /= 10;
}
return ret;
}
public:
bool isHappy(int n)
{
int slow = n, fast = BitSum(n);
while(slow != fast)
{
slow = BitSum(slow);
fast = BitSum(BitSum(fast));
}
return slow == 1;
}
};
4. 盛最多水的容器

算法原理

代码编写
class Solution
{
public:
int maxArea(vector<int>& height)
{
int left = 0, right = height.size() - 1;
int ret = INT_MIN;
while(left != right)
{
// 容积 = 长度 * 高度
int v = (right - left) * min(height[left], height[right]);
ret = max(ret, v);
// 移动指针 - 谁小移动谁
height[left] < height[right] ? ++left : --right;
}
return ret;
}
};
/*
- 时间复杂度:O(n)
- 空间复杂度:O(1)
*/
5. 有效三角形的个数

算法原理

代码编写
class Solution
{
public:
int triangleNumber(vector<int>& nums)
{
// 1、优化
sort(nums.begin(), nums.end());
// 2、利用双指针解决问题
int ret = 0, n = nums.size();
for(int i = n - 1; i >= 2; --i)
{
int left = 0, right = i - 1;
while(left < right)
{
// 当 a+b>c ,a下标属于 [left, right-1]时,都能和 b、c 构成三角形
// 当 a+b<=c ,b下标属于[left-1, right]时,都不能和 a、c 构成三角形
if(nums[left] + nums[right] > nums[i])
{
ret += right - left;
--right;
}
else ++left;
}
}
// 返回值
return ret;
}
};
/*
- 时间复杂度:O(n^2)
- 空间复杂度:O(1)
*/
6. 查找总价格为目标值的两个商品

算法原理

代码编写
class Solution
{
public:
vector<int> twoSum(vector<int>& price, int target)
{
// 1、数据初始化
int left = 0, right = price.size() - 1;
// 2、利用双指针解决问题
while(left < right)
{
int sum = price[left] + price[right];
if(sum < target) ++left;
else if(sum > target) --right;
else return {
price[left], price[right]};
}
// 题目没有明确说明没有结果的话会怎么样,那么该题的测试用例应该都是有结果的
// 为了照顾编译器要求一定要返回一个结果,所以我们最后返回一个空数组即可
return {
};
}
};
/*
- 时间复杂度:O(n)
- 空间复杂度:O(1)
*/
7. 三数之和

算法原理

代码编写
class Solution
{
public:
vector<vector<int>> threeSum(vector<int>& nums)
{
// 1、初始化
int n = nums.size();
vector<vector<int>> ret;
// 2、排序
sort(nums.begin(), nums.end());
// 3、依次固定一个数
for(int i = 0; i < n - 2;)
{
// 4、双指针算法找到两数之和等于 aim 的元素
int left = i + 1, right = n - 1, aim = -nums[i];
while(left < right)
{
int sum = nums[left] + nums[right];
if(sum < aim) ++left;
else if(sum > aim) --right;
else
{
ret.push_back( {
nums[i], nums[left], nums[right]} );
++left, --right; // 保证 left、right 选择的元素不漏
// 对 left、right 已经选择过的元素去重
while(left < right && nums[left] == nums[left - 1]) ++left;
while(left < right && nums[

博客围绕算法展开,涵盖双指针、滑动窗口、二分查找和前缀和四个专题。每个专题包含多个题目,详细介绍了算法原理并给出代码编写示例,如双指针的移动零、滑动窗口的长度最小的子数组等,还给出部分题目的题目描述、示例和解题思路。
最低0.47元/天 解锁文章
529

被折叠的 条评论
为什么被折叠?



