概率期望
文章平均质量分 79
YB Lin
这个作者很懒,什么都没留下…
展开
-
2021 ccpc 哈尔滨 G. Damaged Bicycle 状压 + 期望dp
文章目录题意:思路: 传送门 题意: 你需要从111走到nnn,初始速度是ttt,某些地方有自行车,每个位置自行车有pip_ipi的概率是坏掉的,如果自行车没坏可以骑上自行车,速度是rrr,可以一直骑着到终点。 1≤t≤r≤1e4,1≤n,m≤1e5,0≤k≤18,1≤ai≤n,0≤pi≤1001\le t\le r\le 1e4,1\le n,m\le 1e5,0\le k\le 18,1\le a_i\le n,0\le p_i\le 1001≤t≤r≤1e4,1≤n,m≤1e5,0≤k≤18,1≤a原创 2022-03-14 10:30:33 · 938 阅读 · 1 评论 -
2021牛客暑期多校训练营6 :D Gambling Monster 期望dp + fwt + cdq分治
传送门 文章目录题意:思路: 题意: 给你一个大轮盘,被分成了nnn个区域0,1,2,..,n−10,1,2,..,n-10,1,2,..,n−1,每个区域被转到的概率是ai∑j=0n−1aj\frac{a_i}{\sum_{j=0}^{n-1}a_j}∑j=0n−1ajai,转到第iii个区域的时候得分是iii。现在你初始有x=0x=0x=0分,每次转动轮盘假设得到了yyy分,那么如果x⊕y≤xx\oplus y\le xx⊕y≤x的话,当前得分不会变化,否则将x=x⊕yx=x\oplus yx=原创 2021-08-03 10:35:43 · 324 阅读 · 0 评论 -
2021牛客暑期多校训练营4 B - Sample Game 期望dp\生成函数
传送门 文章目录题意:思路: 题意: 给你一个生成器,每次生成1−n1-n1−n其中的某个数的概率为pip_ipi,生成的规则如下: (1)(1)(1)随机生成一个数加入集合。 (2)(2)(2)判断生成的数是否是集合中的最大值,如果是返回第一步,否则进行下一步。 (3)(3)(3)如果集合中有xxx个数,那么将会得到x2x^2x2的分数。 现在让你求期望得到多少分。 n≤100n\le100n≤100 思路: 题解是生成函数的做法,需要推公式,之后可能会补上,要是忙的话就????了,这里介绍期望dpdp原创 2021-07-29 00:07:03 · 177 阅读 · 0 评论 -
CF1042E Vasya and Magic Matrix 期望dp + 推公式
传送门 文章目录题意:思路: 题意: 思路: 将矩阵中的数放到数组里排序,就是一个比较明显的期望dpdpdp了。 定义f[i]f[i]f[i]表示从第iii个出发的期望得分,所以转移方程也比较好写了:f[i]=∑(f[j]+(x[i]−x[j])2+(y[i]−y[j])2)cntf[i]=\frac{\sum(f[j]+(x[i]-x[j])^2+(y[i]-y[j])^2)}{cnt}f[i]=cnt∑(f[j]+(x[i]−x[j])2+(y[i]−y[j])2) 但是这样有个问题,如果直接转移的原创 2021-03-23 20:51:29 · 130 阅读 · 0 评论 -
P4316 绿豆蛙的归宿 期望dp + DAG
传送门 文章目录题意:思路: 题意: 思路: 首先要发现这是一个DAGDAGDAG图,让后我们可以用拓扑在图上跑期望dpdpdp。 定义f[i]f[i]f[i]表示iii到nnn的期望路径长度,知道终止状态f[n]=0f[n]=0f[n]=0,所以我们需要逆推答案f[1]f[1]f[1],那么我们就需要建反图。转移就是:f[i]=∑f[j]+w[j]deg[i]f[i]=\sum \frac{f[j]+w[j]}{deg[i]}f[i]=∑deg[i]f[j]+w[j] 其中deg[i]deg[i]de原创 2021-03-23 20:53:37 · 142 阅读 · 0 评论 -
SP1026 FAVDICE - Favorite Dice 期望dp
传送门 文章目录题意:思路: 题意: 一个n面的骰子,求期望掷几次能使得每一面都被掷到。 思路: 考虑期望dpdpdp。定义f[i]f[i]f[i]表示有iii面了,还需要多少次能到nnn面。当前是iii面,所以选到新的面的概率是n−in\frac{n-i}{n}nn−i,选到已经有的面的概率是in\frac{i}{n}ni。那么转移也就比较明显了:f[i]=f[i+1]∗n−in+f[i]∗in+1f[i]=f[i+1]*\frac{n-i}{n}+f[i]*\frac{i}{n}+1f[i]=f[i原创 2021-03-23 15:57:17 · 127 阅读 · 0 评论 -
Codeforces Round #604 (Div. 2) E. Beautiful Mirrors 期望dp
传送门 文章目录题意:思路: 题意: 要从111走到nnn,每次成功走下去的概率为pi100\frac{p_i}{100}100pi,如果不成功那就回到111号点继续走。问走完nnn个点的期望是多少。 思路: 以前见过这种失败了就回到起点的期望dpdpdp,但还是想了很久。 考虑f[i]f[i]f[i]表示到当前点的期望步数。如果成功了的话,那就是直接从f[i−1]f[i-1]f[i−1]转移过来就行。如果失败了的话,那就是从i−1i-1i−1走过来,但是回到了起点,再加上到iii点的期望就行啦,写成d原创 2021-03-18 22:17:44 · 119 阅读 · 0 评论 -
P6154 游走 概率dp
传送门 题意: 思路: 给你个DAGDAGDAG,由于每一条路径出现概率相等,那么期望就是总长度路径个数\frac{总长度}{路径个数}路径个数总长度。设f[i]f[i]f[i]表示到iii这个点的总长度,g[i]g[i]g[i]表示到iii这个点路径的总个数。那么转移方程也比较好想了:f[i]=∑edge(j,i)(f[j]+g[j])f[i]=\sum_{edge(j,i)}(f[j]+g[j])f[i]=edge(j,i)∑(f[j]+g[j]) g[i]=∑edge(j,i)g[j]+1g[i原创 2021-03-11 22:04:22 · 134 阅读 · 0 评论 -
P1297 [国家集训队]单选错位 期望
传送门 题意: 思路: 手推了一下没想到还真的能过。 对于相邻的两个数aia_iai和ai+1a_{i+1}ai+1,分两种情况讨论: (1) ai<=ai+1a_i<=a_{i+1}ai<=ai+1 时,答案在[1,ai][1,a_i][1,ai]的范围内概率为aiai+1\frac{a_i}{a_{i+1}}ai+1ai,正确率为1ai\frac{1}{a_i}ai1,乘起来为1ai+1\frac{1}{a_i+1}ai+11。另一种情况正确率为000。 (2原创 2021-03-11 16:51:11 · 103 阅读 · 0 评论