AcWing 3. 完全背包问题(背包dp)

题目链接点击查看

题目描述

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。第 i 种物品的体积是 vi,价值是 wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。

输入输出格式

输入

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出

输出一个整数,表示最大价值。

输入输出样例

输入

4 5
1 2
2 4
3 4
4 5

输出

10

题目分析

完全背包问题与01背包的问题的区别在于在完全背包问题中每个物品可以取无限个,并以此为基础求出总体积和不超过背包容量v物品的最大价值。和01背包问题的思考方式一样,从状态表示f(i, j)与状态计算入手,状态表示f(i, j)中存储的是从前 i 个物品中选择总体积不超过j的物品的所有符合条件方案中的最大值,这与01背包问题是一样的。而状态计算略有不同,在集合划分中,我们是根据选择几个第 i 个物品来划分相应的子集,于是状态计算表达式变成了

f[i, j] = max(f[i,  j],f[i - 1][v - k * v[i]] + k * w[i]) 

在此表达式中 k 代表的是选择几件第 i 个物品,二维数组的第一位只是代表选不选第i件物品,在决策过程中,我们只需要用三重循环遍历每一种情况即可。代码如下。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 1010;
int f[N][N];
int v[N], w[N];
int main() {
    int n, m;
    cin >> n >> m;
    for  (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    for (int i = 1; i <= n; i ++ ) 
       for (int j = 1; j <= m; j ++ ) {
       	   for (int k = 0; k * v[i] <= j; k ++ )
       	       f[i][j] = max(f[i][j], f[i - 1][j - k*v[i]] + k * w[i]);
       	   
	   }
	   
	cout << f[n][m] << endl;
	return 0;   
   
} 

代码优化一

在提交题目的时候如果我们用上述三重循环的朴素做法时间会超时,我们可以将代码从三重循环优化成两重循环。首先,我们可以由上述分析得到如下的公式:

f[i , j ] = max( f[i-1,j] , f[i-1,j-v]+w ,  f[i-1,j-2*v]+2*w , f[i-1,j-3*v]+3*w , .....)
f[i , j-v]= max(            f[i-1,j-v]   ,  f[i-1,j-2*v] + w , f[i-1,j-2*v]+2*w , .....)

我们发现两者对应项之间只差一个 w, 且由于f [ i , j - v ]的第一项缺失,于是,我们可以得到以下关系

f[i, j] = max(f[i - 1, j], f[i, j - v] + w)

简化之后的代码为:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 1010;
int n, m;
int f[N][N];
int v[N], w[N];
int main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
	for (int i = 1; i <= n; i ++ ) {
		for (int j = 0; j <= m; j ++ ) {
			f[i][j] = f[i - 1][j];
			if (j >= v[i]) f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
		}
	} 
	cout << f[n][m] << endl;
	return 0;
} 

代码优化二

简化为 f [ i, j ] = max( f [ i - 1, j ], f [ i , j - v] + w )代码后,我们发现这跟之前的01背包问题的原始代码很像,因此我们可以在此基础上再次简化将二维数组简化为一维数组:

 f[j] = max(f[j],f[j-v[i]]+w[i]);

执行这行代码的循环条件为

for (int i = 1; i <= n; i ++ ) 
	   for (int j = v[i]; j <= m; j ++ )

与01背包的代码简化不同,这里是用正序进行循环,而01背包二层循环是逆序,这是因为优化成一维之后,j - v[ i ]比 j 小,从小到大循环会先计算 f [ j - v [ i ] ],从大到小循环会先计算f [ j ],根据还原成的状态不同(是 f[ i , j - v [ i ] ) 还是 f[ i - 1, j - v[ i ], 前者要先计算f [ j - v [ i ] ]需要从小到大计算,后这要从大到小计算)来确定从大到小还是从小到大。最终代码为:

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main() {
    cin >> n >> m;
	for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
	for (int i = 1; i <= n; i ++ ) 
	   for (int j = v[i]; j <= m; j ++ ) {
	   	  f[j] = max(f[j], f[j - v[i]] + w[i]);
	   }	
	cout << f[m] << endl;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

在森林中麋了鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值