Hadoop (十四) --------- MapReduce 框架原理


我们来根据数据流的方向分析 MapReduce 运行原理
在这里插入图片描述

一、InputFormat 数据输入

1. 切片与 MapTask 并行度决定机制

MapTask 的并行度决定 Map 阶段的任务处理并发度,进而影响到整个Job的处理速度。

名词解释

数据块:Block 是 HDFS 物理上把数据分成一块一块。数据块是HDFS存储数据单位。

数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行存储。数据切片是 MapReduce 程序计算输入数据的单位,一个切片会对应启动一个 MapTask。

在这里插入图片描述

2. Job 提交流程源码和切片源码详解

Job提交流程源码详解

源码:

waitForCompletion()

submit();

// 1建立连接
	connect();	
		// 1)创建提交Job的代理
		new Cluster(getConfiguration());
			// (1)判断是本地运行环境还是yarn集群运行环境
			initialize(jobTrackAddr, conf); 

// 2 提交job
submitter.submitJobInternal(Job.this, cluster)

	// 1)创建给集群提交数据的Stag路径
	Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);

	// 2)获取jobid ,并创建Job路径
	JobID jobId = submitClient.getNewJobID();

	// 3)拷贝jar包到集群
    copyAndConfigureFiles(job, submitJobDir);	
	rUploader.uploadFiles(job, jobSubmitDir);

	// 4)计算切片,生成切片规划文件
    writeSplits(job, submitJobDir);
		maps = writeNewSplits(job, jobSubmitDir);
		input.getSplits(job);

	// 5)向Stag路径写XML配置文件
    writeConf(conf, submitJobFile);
	conf.writeXml(out);

	// 6)提交Job,返回提交状态
    status = submitClient.submitJob(jobId, submitJobDir.toString(), job.getCredentials());

解析:

在这里插入图片描述

FileInputFormat 切片源码解析 (input.getSplits(job))

1)程序先找到你数据存储的目录。

2)开始遍历处理 (规划切片) 目录下的每一个文件

3)遍历第一个文件 ss.txt

  • 获取文件大小 s.sizeof (ss.txt)

  • 计算切片大小

computeSplitSize(Math.max(minSize,Math.min(maxSize.blocksizc)))=blocksize=128M
  • 默认情况下,切片大小 = blocksize

  • 开始切,形成第1个切片:ss.txt-0:128M,第2个切片ss.txt-128:256M,第3个切片ss.txt-256M:300M(每次切片时,都要判断切完剩/下的部分是否大于块的1.1倍,不大于1.1倍就划分一块切片)

  • 将切片信息写到一个切片规划文件中

  • 整个切片的核心过程在 getSplit() 方法中完成

  • InputSplit 只记录了切片的元数据信息,比如起始位置、长度以及所在的节点列表等

4)提交切片规划文件到 YARN 上,YARN 上的 MrAppMaster 就可以根据切片规划文件计算开启 MapTask 个数。

3. FileInputFormat 切片机制

切片机制

  • 简单地按照文件的内容长度进行切片
  • 切片大小,默认等于 Block 大小
  • 切片时不考虑数据集整体,而是逐个针对每一个文件单独切片

案例分析

在这里插入图片描述

FileInputFormat 切片大小参数配置

A、源码中计算切片大小的公式

Math.max(minSize,Math.min(maxSize, blockSize));
mapreduce.input.fileinputformat.split.minsize=1 默认值为1
mapreduce.input.fileinputformat.split.maxsize= Long.MAXValue 默认值Long.MAXValue
因此,默认情况下,切片大小=blocksize。

B、切片大小设置

maxsize (切片最大值) :参数如果调得比 blocksize 小,则会让切片变小,而且就等于配置的这个
minsize (切片最小值) :参数调的比 blocksize 大,则可以让切片变得比 blocksize 还大。

C、获取切片信息 API

//获取切片的文件名称
String name = inputSplit.getPath().getName();
//根据文件类型获取切片信息
FileSplit inputSplit = (FileSplit)context.getInputSplit();

4. TextInputFormat

FileInputFormat 实现类

思考:在运行 MapReduce 程序时,输入的文件格式包括:基于行的日志文件、二进制格式文件、数据库表等。那么,针对不同的数据类型,MapReduce 是如何读取这些数据的呢?

FileInputFormat 常见的接口实现类包括:TextInputFormat、KeyValueTextInputFormat、NLineInputFormat、CombineTextInputFormat 和自定义 InputFormat 等。

TextInputFormat

TextInputFormat是默认的FileInputFormat实现类。按行读取每条记录。键是存储该行在整个文件中的起始字节偏移量, LongWritable类型。值是这行的内容,不包括任何行终止符(换行符和回车符),Text类型。
以下是一个示例,比如,一个分片包含了如下 4 条文本记录。

Rich learning form
Intelligent learning engine
Learning more convenient
From the real demand for more close to the enterprise

每条记录表示为以下键/值对:

(0, Rich learning form)
(20, Intelligent learning engine)
(49, Learning more convenient)
(74, From the real demand for more close to the enterprise)

5. CombineTextInputFormat 切片机制

框架默认的 TextInputFormat 切片机制是对任务按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个 MapTask,这样如果有大量小文件,就会产生大量的 MapTask,处理效率极其低下。

应用场景:

CombineTextInputFormat 用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个 MapTask 处理。

虚拟存储切片最大值设置

CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m

注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。

切片机制

生成切片过程包括:虚拟存储过程和切片过程二部分。

在这里插入图片描述

虚拟存储过程:

将输入目录下所有文件大小,依次和设置的 setMaxInputSplitSize 值比较,如果不大于设置的最大值,逻辑上划分一个块。如果输入文件大于设置的最大值且大于两倍,那么以最大值切割一块;当剩余数据大小超过设置的最大值且不大于最大值 2 倍,此时将文件均分成 2 个虚拟存储块(防止出现太小切片) 。

例如 setMaxInputSplitSize值 为4M,输入文件大小为8.02M,则先逻辑上分成一个4M。剩余的大小为4.02 M,如果按照 4M 逻辑划分,就会出现 0.02M 的小的虚拟存储文件,所以将剩余的 4.02M 文件切分成 ( 2.01M和2.01M ) 两个文件。

切片过程:

A、判断虚拟存储的文件大小是否大于 setMaxInputSplitSize 值,大于等于则单独形成一个切片。
B、如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。
C、测试举例:有 4 个小文件大小分别为 1.7M、5.1M、3.4M 以及 6.8M 这四个小文件,则虚拟存储之后形成 6 个文件块,大小分别为:1.7M,(2.55M、2.55M) ,3.4M以及 (3.4M、3.4M)

最终会形成3个切片,大小分别为:

(1.7+2.55)M,(2.55+3.4)M,(3.4+3.4) M

CombineTextInputFormat 案例实操

需求 :将输入的大量小文件合并成一个切片统一处理。

数据

在这里插入图片描述

期望一个切片处理 4 个文件。

实现过程

A、不做任何处理,运行 WordCount 案例程序,观察切片个数为4。

number of splits:4

B、在 WordcountDriver 中增加如下代码,运行程序,并观察运行的切片个数为 3 。

驱动类中添加代码如下:

// 如果不设置InputFormat,它默认用的是TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);

//虚拟存储切片最大值设置4m
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);

运行结果为3个切片

number of splits:3

C、在WordcountDriver中增加如下代码,运行程序,并观察运行的切片个数为1。

驱动中添加代码如下:

// 如果不设置InputFormat,它默认用的是TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);

//虚拟存储切片最大值设置20m
CombineTextInputFormat.setMaxInputSplitSize(job, 20971520);

运行结果为1个切片

number of splits:1

二、MapReduce 工作流程

在这里插入图片描述
在这里插入图片描述
上面的流程是整个 MapReduce 最全工作流程,但是 Shuffle 过程只是从第7步开始到第 16 步结束,具体 Shuffle 过程详解,如下:

  • MapTask收集我们的map()方法输出的 kv 对,放到内存缓冲区中
  • 从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
  • 多个溢出文件会被合并成大的溢出文件
  • 在溢出过程及合并的过程中,都要调用 Partitioner 进行分区和针对 key 进行排序
  • ReduceTask 根据自己的分区号,去各个 MapTask 机器上取相应的结果分区数据
  • ReduceTask 会抓取到同一个分区的来自不同 MapTask 的结果文件,ReduceTask 会将这些文件再进行合并(归并排序)
  • 合并成大文件后,Shuffle 的过程也就结束了,后面进入 ReduceTask 的逻辑运算过程 (从文件中取出一个一个的键值对Group,调用用户自定义的 reduce() 方法)

注意:

Shuffle 中的缓冲区大小会影响到 MapReduce 程序的执行效率,原则上说,缓冲区越大,磁盘 io 的次数越少,执行速度就越快。

缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M。

三、Shuffle 机制

1. Shuffle 机制概述

Map 方法之后,Reduce 方法之前的数据处理过程称之为 Shuffle。

在这里插入图片描述

2. Partition 分区

要求特统计结果按照条件输出到不同文件中 (分区)。比如:将统计结果按照手机归属地不同省份输出到不同文件中 (分区)

默认 Partitioner 分区

public class HashPartitioner<K, V> extends Partitioner<K, V> {
    public int getPartition(K key, V value, int numReduceTasks) {
        return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
    }
}

默认分区时根据 key 的 hashCode 的 ReduceTasks 个数取模得到的。用户没法控制 哪个 key 存储到哪个分区

总结

  • 如果ReduceTask的数量>getPartition的结果数,则会多产生几个空的输出文件part-r-000x

  • 如果1 < ReduceTask 的数量 < getPartition的结果数,则有一部分分区数据无处安放,会Exception

  • 如果 ReduceTask 的数量=1,则不管 MapTask 端输出多少个分区文件,最终结果都交给ReduceTask,最终也就只会产生一个结果文件patt-r-00000

案例分析

分区号必须从零开始,逐一累加。
例如:假设自定义分区数为5,则

(1) job.setNumReduceTasks(1):
会正常运行只不过会产生一个输出文件
(2)job.setNuumRedhuceTasks(2);
会报错
(3)job.setNunReduceTasks(6).
大于5,程序会正常运行,会产生空文件

四、WritableComparable 排序

1. 排序概述

排序是 MapRedhuce 框架中最重要的操作之一。

MapTask 和 RedluceTask 均会对数据按照 key 进行排序。该操作 Hadoop 的默认行为。任何应用程序中的数据均会被排序,而不管逻辑否需要。

默认排序是按照字典顺序排序,且实现该排序的方法是快速排序。

对于 MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲用率达到一定阈值后,再对缓冲区中的数据进行一次快速排序,并将这些有序数据溢写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行归并排序。

对于 ReduceTask,它从每个 MapTask 上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写磁盘上,否则存储在内存中。如果磁盘上文件数目达到一定阈值,则进行一次归并排序以生成一个更大文件;如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据溢写到磁盘上。当所有数据拷贝完毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序。

2. 排序分类

(1) 部分排序

MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部有序。

(2) 全排序

最终输出结果只有一个文件,且文件内部有序。实现方式是只设置一个ReduceTask。但该方法处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce所提供的并行架构。

(3) 辅助排序 : (GroupingComparator分组)

在 Reduce 端对 key 进行分组。应用于:在接收的 key 为 bean 对象时,想让一个或几个字段相同(全部字段比较不相同) 的 key 进入到同一个 reduce 方法时,可以采用分组排序。

(4) 二次排序

在自定义排序过程中,如果 compareTo 中 的判断条件为两个即为二次排序。

3. 自定义排序原理分析

bean 对象做为 key 传输,需要实现WritableComparable 接口重写 compareTo 方法,就可以实现排序。

@Override
public int compareTo(FlowBean bean) {
    
    int result;
    
    // 按照总流量大小, 倒序排序
    if (this.sumFlow > bean.getSumFlow()) {
        result = -1;
    } else if (this.sumFlow < bean.getSumFlow()) {
        result = 1;
    } else {
        result = 0;
    }
    return result;
}

五、Combiner 合并

  • Combiner 是 MR 程序中 Mapper 和 Reducer 之外的一种组件。

  • Combiner 组件的父类就是 Reducer。

  • Combiner 和 Reducer 的区别在于运行的位置:Combiner是在每一个 MapTask 所在的节点运行;Reducer是接收全局所有 Mapper 的输出结果;

  • Combiner 的意义就是对每一个 MapTask 的输出进行局部汇总,以减小网络传输量

  • Combiner 能够应用的前提是不能影响最终的业务逻辑,而且,Combiner 的输出 kv 应该跟Reducer的输入kv类型要对应起来。

在这里插入图片描述

自定义 Combiner 实现步骤

自定义一个 Combiner 继承 Reducer,重写 Reduce 方法

public class WordCountCombiner extends Reducer<Text, IntWritable> {
    private IntWritable outV = new IntWritable();
    
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable value : values) {
            sum += value.get();
        }
        outV.set(sum);
        context.write(key, outV);
    }
}

在 Job 驱动类中设置

job.setCombinerClass(WordCountCombiner.class)

实操

统计过程中对每一个 MapTask 的输出进行局部汇总,以减小网络传输量即采用 Combiner 功能。

在这里插入图片描述

方案一实现:

A、增加一个 WordCountCombiner 类继承

package com.fancy.mapreduce.combiner;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;

public class WordCountCombiner extends Reducer<Text, IntWritable, Text, IntWritable> {

private IntWritable outV = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

        int sum = 0;
        for (IntWritable value : values) {
            sum += value.get();
        }

        //封装outKV
        outV.set(sum);

        //写出outKV
        context.write(key,outV);
    }
}

B、在 WordcountDriver 驱动类中指定 Combiner

// 指定需要使用combiner,以及用哪个类作为combiner的逻辑
job.setCombinerClass(WordCountCombiner.class);

方案二实现:

A、将 WordcountReducer 作为 Combiner 在WordcountDriver 驱动类中指定

// 指定需要使用Combiner,以及用哪个类作为Combiner的逻辑
job.setCombinerClass(WordCountReducer.class);

在这里插入图片描述

六、OutputFormat 数据输出

OutputFormat 是 MapReduce 输出的基类,所有实现 MapReduce 输出都实现了 OutputFormat 接口。

OutputFormat 接口实现类

在这里插入图片描述

默认输出格式 TextOutputFormat

自定义 OutputFormat

场景:输出数据到 MySQL/HBase/Elasticsearch 等存储框架中

步骤:

1.自定义一个类继承 FileOutputFormat

2.改写 RecordWriter,具体改写输出数据的方法 write();

七、MapReduce 内核源码解析

1. MapTask 工作机制

在这里插入图片描述

  • Read 阶段:MapTask 通过 InputFormat 获得的 RecordReader,从输入 InputSplit 中解析出一个个key/value。
  • Map阶段:该节点主要是将解析出的 key/value 交给用户编写 map() 函数处理,并产生一系列新的 key/value。
  • Collect 收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调 OutputCollector.collect() 输出结果。在该函数内部,它会将生成的 key/value 分区(调用Partitioner),并写入一个环形内存缓冲区中。
  • Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。
    溢写阶段详情:

步骤1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号Partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。

步骤2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。

步骤3:将分区数据的元信息写到内存索引数据结构SpillRecord中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过1MB,则将内存索引写到文件 output/spillN.out.index 中。

  • Merge 阶段:当所有数据处理完成后,MapTask 对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。当所有数据处理完后,MapTask 会将所有临时文件合并成一个大文件,并保存到文件 output/file.out 中,同时生成相应的索引文件 output/file.out.index。
    在进行文件合并过程中,MapTask 以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并mapreduce.task.io.sort.factor(默认10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。
    让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。

2. ReduceTask 工作机制

在这里插入图片描述

  • Copy 阶段:ReduceTask 从各个 MapTask 上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
  • Sort 阶段:在远程拷贝数据的同时,ReduceTask 启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。按照 MapReduce 语义,用户编写 reduce() 函数输入数据是按 key 进行聚集的一组数据。为了将 key 相同的数据聚在一起,Hadoop 采用了基于排序的策略。由于各个 MapTask 已经实现对自己的处理结果进行了局部排序,因此,ReduceTask 只需对所有数据进行一次归并排序即可。
  • Reduce 阶段:reduce() 函数将计算结果写到 HDFS 上。

3. ReduceTask 并行度决定机制

MapTask并行度由切片个数决定,切片个数由输入文件和切片规则决定。

ReduceTask 的并行度同样影响整个 Job 的执行并发度和执行效率,但与 MapTask 的并发数由切片数决定不同,ReduceTask 数量的决定是可以直接手动设置。

// 默认值是1,手动设置为4
job.setNumReduceTasks(4);

1个 Master 节点,16 个 Slave 节点,CPU8GHZ,内存2G 的环境下设置 ReduceTask 个数与执行总时间

在这里插入图片描述

注意

  • ReduceTask=0,表示没有 Reduce 阶段,输出文件个数和 Map 个数一致。
  • RedoceTask 默认值就是 1,所以输出文件个数为一个。
  • 如果数据分布不均匀,就有可能在 Reduce 阶段产生数据倾斜
  • ReduceTask 数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有 1 个 ReduceTask。
  • 具体多少个ReduceTask,需要根据集群性能而定。
  • 如果分区数不是1,但是 ReduceTask 为 1,是否执行分区过程。答案是:不执行分区过程,因为在MapTask 的源码中,执行分区的前提是先判断ReduceNum 个数是否大于 1。不大于肯定不执行。

4. MapTask & ReduceTask源码解析

MapTask 源码解析流程

在这里插入图片描述

ReduceTask 源码解析流程

在这里插入图片描述

八、Join 应用

1. Reduce Join

Map 端的主要工作:为来自不同表或文件的 key/value 对,打标签以区别不同来源的记录。然后用连接字段作为 key,其余部分和新加的标志作为 value,最后进行输出。

Reduce 端的主要工作:在Reduce端以连接字段作为key的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录(在Map阶段已经打标志)分开,最后进行合并就ok了。

我们可以通过将关联条件作为 Map 输出的 key,将两表满足Join条件的数据并携带数据所来源的文件信息,发往同一个ReduceTask,在 Reduce 中进行数据的串联。

在这里插入图片描述

缺点:这种方式中,合并的操作是在 Reduce 阶段完成,Reduce 端的处理压力太大,Map 节点的运算负载则很低,资源利用率不高,且在 Reduce 阶段极易产生数据倾斜。

解决方案:Map端实现数据合并。

2. Map Join

使用场景 :Map Join 适用于一张表十分小、一张表很大的场景。

优点

思考 : 在Reduce端处理过多的表,非常容易产生数据倾斜。怎么办?

在 Map 端缓存多张表,提前处理业务逻辑,这样增加 Map 端业务,减少 Reduce 端数据的压力,尽可能的减少数据倾斜。

具体办法:采用 DistributedCache

  • 在 Mapper 的 setup 阶段,将文件读取到缓存集合中。
  • 在 Driver 驱动类中加载缓存。
//缓存普通文件到Task运行节点。
job.addCacheFile(new URI("file:///e:/cache/pd.txt"));
//如果是集群运行,需要设置HDFS路径
job.addCacheFile(new URI("hdfs://hadoop102:8020/cache/pd.txt"));

MapJoin 适用于关联表中有小表的情形。

在这里插入图片描述

九、数据清洗 (ETL)

ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取 (Extract)、转换(Transform) 、加载 (Load) 至目的端的过程。ETL 一词较常用在数据仓库,但其对象并不限于数据仓库。

在运行核心业务 MapReduce 程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行 Mapper 程序,不需要运行 Reduce 程序。

实操

去除日志中字段个数小于等于11的日志。

在这里插入图片描述

需要在 Map 阶段对输入的数据根据规则进行过滤清洗

A、编写 WebLogMapper 类

package com.atguigu.mapreduce.weblog;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{
	
	@Override
	protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
		
		// 1 获取1行数据
		String line = value.toString();
		
		// 2 解析日志
		boolean result = parseLog(line,context);
		
		// 3 日志不合法退出
		if (!result) {
			return;
		}
		
		// 4 日志合法就直接写出
		context.write(value, NullWritable.get());
	}

	// 2 封装解析日志的方法
	private boolean parseLog(String line, Context context) {

		// 1 截取
		String[] fields = line.split(" ");
		
		// 2 日志长度大于11的为合法
		if (fields.length > 11) {
			return true;
		}else {
			return false;
		}
	}
}

B、编写 WebLogDriver 类

package com.atguigu.mapreduce.weblog;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WebLogDriver {
	public static void main(String[] args) throws Exception {

        // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[] { "D:/input/inputlog", "D:/output1" };

		// 1 获取job信息
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);

		// 2 加载jar包
		job.setJarByClass(LogDriver.class);

		// 3 关联map
		job.setMapperClass(WebLogMapper.class);

		// 4 设置最终输出类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(NullWritable.class);

		// 设置reducetask个数为0
		job.setNumReduceTasks(0);

		// 5 设置输入和输出路径
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		// 6 提交
         boolean b = job.waitForCompletion(true);
         System.exit(b ? 0 : 1);
	}
}

十、MapReduce 开发总结

A、输入数据接口:InputFormat

  • 默认使用的实现类是:TextInputFormat
  • TextInputFormat 的功能逻辑是:一次读一行文本,然后将该行的起始偏移量作为key,行内容作为value返回。
  • CombineTextInputFormat 可以把多个小文件合并成一个切片处理,提高处理效率。

B、逻辑处理接口:Mapper

  • 用户根据业务需求实现其中三个方法:map() setup() cleanup ()

C、Partitioner 分区

  • 有默认实现 HashPartitioner,逻辑是根据key的哈希值和numReduces来返回一个分区号;key.hashCode()&Integer.MAXVALUE % numReduces
  • 如果业务上有特别的需求,可以自定义分区。

D、Comparable 排序

  • 当我们用自定义的对象作为 key 来输出时,就必须要实现 WritableComparable 接口,重写其中的 compareTo() 方法。
  • 部分排序:对最终输出的每一个文件进行内部排序。
  • 全排序:对所有数据进行排序,通常只有一个Reduce。
  • 二次排序:排序的条件有两个。

E、Combiner 合并

  • Combiner合并可以提高程序执行效率,减少IO传输。但是使用时必须不能影响原有的业务处理结果。

F、逻辑处理接口 :Reducer

  • 用户根据业务需求实现其中三个方法:reduce() setup() cleanup()

G、输出数据接口 :OutputFormat

  • 默认实现类是 TextOutputFormat,功能逻辑是:将每一个 KV 对,向目标文本文件输出一行。
  • 用户还可以自定义 OutputFormat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

在森林中麋了鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值