目录
一、初步检索
1. _cat
GET /_cat/nodes
:查看所有节点
GET /_cat/health
:查看 es 健康状况
GET /_cat/master
:查看主节点
GET /_cat/indices
:查看所有索引 就相当于 MySQL 中的 show databases;
2. 索引一个文档 (保存)
保存一个数据,保存在哪个索引的哪个类型下,指定用哪个唯一标识 PUT customer/external/1
;在 customer 索引下的 external 类型下保存1 号数据为
PUT customer/external/1
{
"name": "John Doe"
}
PUT 和 POST 都可以索引一个文档。。
POST 用于新增:
如果不指定 id,会自动生成 id。指定 id 就会修改这个数据,并新增版本号PUT 可以新增可以修改。
PUT
必须指定 id:由于 PUT 需要指定 id,我们一般都用来做修改操作,不指定 id 会报错。
3. 查询文档
GET customer/external/1
结果:
{
"_index": "customer", //在哪个索引
"_type": "external", //在哪个类型
"_id": "1", //记录 id
"_version": 2, //版本号
"_seq_no": 1, //并发控制字段,每次更新就会+1,用来做乐观锁
"_primary_term": 1, //同上,主分片重新分配,如重启,就会变化
"found": true, "_source": { //真正的内容
"name": "John Doe"
}
}
更新携带 ?if_seq_no=0&if_primary_term=1
4. 更新文档
POST customer/external/1/_update
{
"doc":{
"name": "John Doew"
}
}
或者
POST customer/external/1
{
"name": "John Doe2"
}
或者
PUT customer/external/1
{
"name": "John Doe"
}
不同:POST 操作会对比源文档数据,如果相同不会有什么操作,文档 version 不增加 PUT 操作总会将数据重新保存并增加 version 版本;
带_update 对比元数据如果一样就不进行任何操作。
看场景:
对于大并发更新,不带 update;
对于大并发查询偶尔更新,带 update;对比更新,重新计算分配规则。
更新同时增加属性
POST customer/external/1/_update
{
"doc": {
"name": "Jane Doe",
"age": 20
}
}
PUT 和 POST 不带_update 也可以
PUT customer/external/1
{
"name": "John Doe"
}
5. 删除文档&索引
DELETE customer/external/1
DELETE customer
6. bulk 批量 API
POST customer/external/_bulk
{"index":{"_id":"1"}}
{"name": "John Doe" }
{"index":{"_id":"2"}}
{"name": "Jane Doe" }
语法格式:
{ action: { metadata }}\n
{ request body }\n
{ action: { metadata }}\n
{ request body }\n
复杂实例:
POST /_bulk
{ "delete": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "create": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "title": "My first blog post" }
{ "index": { "_index": "website", "_type": "blog" }}
{ "title": "My second blog post" }
{ "update": { "_index": "website", "_type": "blog", "_id": "123"} }
{ "doc" : {"title" : "My updated blog post"} }
bulk API 以此按顺序执行所有的 action(动作)。如果一个单个的动作因任何原因而失败,它将继续处理它后面剩余的动作。当 bulk API 返回时,它将提供每个动作的状态 (与发送的顺序相同),所以您可以检查是否一个指定的动作是不是失败了。
7. 样本测试数据
我准备了一份顾客银行账户信息的虚构的 JSON 文档样本。每个文档都有下列的schema (模式):
{
"account_number": 0,
"balance": 16623,
"firstname": "Bradshaw",
"lastname": "Mckenzie",
"age": 29,
"gender": "F",
"address": "244 Columbus Place",
"employer": "Euron",
"email": "bradshawmckenzie@euron.com",
"city": "Hobucken",
"state": "CO"
}
测试数据链接:
https://raw.githubusercontent.com/elastic/elasticsearch/7.4/docs/src/test/resources/accounts.json
导入测试数据
POST bank/account/_bulk
测试数据
二、进阶检索
ElasticSearch 、Kibana开机自启动:
1. SearchAPI
ES 支持两种基本方式检索 :
- 一个是通过使用 REST request URI 发送搜索参数 (uri+检索参数)
- 另一个是通过使用 REST request body 来发送它们 (uri+请求体)
A、检索信息
一切检索从_search 开始
GET bank/_search
检索 bank 下所有信息,包括type 和docs
GET bank/_search?q=*&sort=account_number:asc
请求参数方式检索响应结果解释:
took - Elasticsearch - 执行搜索的时间 (毫秒)
time_out - 告诉我们搜索是否超时
_shards - 告诉我们多少个分片被搜索了,以及统计了成功/失败的搜索分片
hits - 搜索结果
hits.total - 搜索结果
hits.hits\ - 实际的搜索结果数组 (默认为前 10 的文档)
sort - 结果的排序 key (键,没有则按 score 排序)
score 和 max_score –相关性得分和最高得分 (全文检索用)
B、uri+请求体进行检索
GET bank/_search
{
"query":
{
"match_all": {}
},
"sort":
[
{
"account_number":
{
"order": "desc"
}
}
]
}
HTTP 客户端工具(POSTMAN),get 请求不能携带请求体,我们变为 post 也是一样的。我们 POST 一个 JSON 风格的查询请求体到 _search API。
需要了解,一旦搜索的结果被返回,Elasticsearch 就完成了这次请求,并且不会维护任何服务端的资源或者结果的 cursor(游标)。
2、Query DSL
A、基本语法格式
Elasticsearch 提供了一个可以执行查询的 Json 风格的 DSL (domain-specific language 领域特定语言)。这个被称为 Query DSL。该查询语言非常全面,并且刚开始的时候感觉有点复杂,真正学好它的方法是从一些基础的示例开始的。
一个查询语句的典型结构
{
QUERY_NAME:
{
ARGUMENT: VALUE, ARGUMENT: VALUE,...
}
}
如果是针对某个字段,那么它的结构如下:
{
QUERY_NAME:
{
FIELD_NAME:
{
ARGUMENT: VALUE, ARGUMENT: VALUE,...
}
}
}
GET bank/_search
{
"query":
{
"match_all": {}
},
"from": 0,
"size": 5,
"sort":
[
{
"account_number":
{
"order": "desc"
}
}
]
}
query 定义如何查询,match_all 查询类型 [代表查询所有的所有],es 中可以在 query 中组合非常多的查询类型完成复杂查询。除了 query 参数之外,我们也可以传递其它的参数以改变查询结果。如sort,size,from+size 限定,完成分页功能。sort 排序,多字段排序,会在前序字段相等时后续字段内部排序,否则以前序为准
B、返回部分字段
GET bank/_search
{
"query": {
"match_all": {}
},
"from": 0,
"size": 5,
"_source": ["age","balance"]
}
C、match [匹配查询]
基本类型(非字符串),精确匹配
GET bank/_search
{
"query":
{
"match":
{
"account_number": "20"
}
}
}
match 返回 account_number=20 的
字符串,全文检索
GET bank/_search
{
"query":
{
"match":
{
"address": "mill"
}
}
}
最终查询出 address 中包含 mill 单词的所有记录
match 当搜索字符串类型的时候,会进行全文检索,并且每条记录有相关性得分。
字符串,多个单词 (分词+全文检索)
GET bank/_search
{
"query":
{
"match":
{
"address": "mill road"
}
}
}
D、match_phrase [短语匹配]
将需要匹配的值当成一个整体单词(不分词)进行检索
GET bank/_search
{
"query":
{
"match_phrase":
{
"address": "mill road"
}
}
}
查出 address 中包含 mill road 的所有记录,并给出相关性得分
E、multi_match [多字段匹配]
GET bank/_search
{
"query":
{
"multi_match":
{
"query": "mill",
"fields": ["state","address"]
}
}
}
state 或者 address 包含 mill
F、bool [复合查询]
bool 用来做复合查询:
复合语句可以合并 任何 其它查询语句,包括复合语句,了解这一点是很重要的。这就意味着,复合语句之间可以互相嵌套,可以表达非常复杂的逻辑。
must:必须达到 must 列举的所有条件
GET bank/_search
{
"query":
{
"bool":
{
"must":
[
{ "match": { "address": "mill" } },
{ "match": { "gender": "M" } }
]
}
}
}
should:应该达到 should 列举的条件,如果达到会增加相关文档的评分,并不会改变查询的结果。如果 query 中只有 should 且只有一种匹配规则,那么should 的条件就会被作为默认匹配条件而去改变查询结果
GET bank/_search
{
"query":
{
"bool":
{
"must":
[
{
"match": { "address": "mill" }
},
{
"match": { "gender": "M" }
}
],
"should":
[
{
"match": { "address": "lane" }
}
]
}
}
}
must_not 必须不是指定的情况
GET bank/_search
{
"query": {
"bool":
{
"must":
[
{
"match": { "address": "mill" }
},
{
"match": { "gender": "M" }
}
],
"should":
[
{
"match": { "address": "lane" }
}
],
"must_not":
[
{
"match": { "email": "baluba.com" }
}
]
}
}
}
address 包含 mill,并且 gender 是 M,如果 address 里面有 lane 最好不过,但是email 必须不包含baluba.com
G、filter [结果过滤]
并不是所有的查询都需要产生分数,特别是那些仅用于 “filtering” (过滤)的文档。为了不计算分数 Elasticsearch 会自动检查场景并且优化查询的执行。
GET bank/_search
{
"query":
{
"bool":
{
"must":
[
{
"match": { "address": "mill"}
}
],
"filter":
{
"range":
{
"balance":
{
"gte": 10000, "lte": 20000
}
}
}
}
}
}
H、term
和 match 一样。匹配某个属性的值。全文检索字段用 match,其他非text 字段匹配用term。
GET bank/_search
{
"query":
{
"bool":
{
"must":
[
{
"term":
{
"age":
{
"value": "28"
}
},
}
{
"match":
{
"address": "990 Mill Road"
}
}
]
}
}
}
I、aggregations (执行聚合)
聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于SQL GROUPBY 和 SQL 聚合函数。在 Elasticsearch 中,您有执行搜索返回 hits(命中结果),并且同时返回聚合结果,把一个响应中的所有 hits(命中结果)分隔开的能力。这是非常强大且有效的,您可以执行查询和多个聚合,并且在一次使用中得到各自的(任何一个的)返回结果,使用一次简洁和简化的 API 来避免网络往返。
搜索 address 中包含 mill 的所有人的年龄分布以及平均年龄,但不显示这些人的详情。
GET bank/_search
{
"query":
{
"match":
{
"address": "mill"
}
},
"aggs":
{
"group_by_state":
{
"terms":
{
"field": "age"
}
},
"avg_age":
{
"avg":
{
"field": "age"
}
}
},
"size": 0
}
size:0 不显示搜索数据
aggs:执行聚合。
聚合语法如下
"aggs":
{
"aggs_name 这次聚合的名字,方便展示在结果集中":
{
"AGG_TYPE 聚合的类型(avg,term,terms)": {}
}
},
复杂:
按照年龄聚合,并且请求这些年龄段的这些人的平均薪资
GET bank/account/_search
{
"query":
{
"match_all": {}
},
"aggs":
{
"age_avg":
{
"terms":
{
"field": "age", "size": 1000
},
"aggs":
{
"banlances_avg":
{
"avg":
{
"field": "balance"
}
}
}
}
},
"size": 1000
}
复杂:查出所有年龄分布,并且这些年龄段中 M 的平均薪资和 F 的平均薪资以及这个年龄段的总体平均薪资
GET bank/account/_search
{
"query":
{
"match_all": {}
},
"aggs":
{
"age_agg":
{
"terms":
{
"field": "age", "size": 100
},
"aggs":
{
"gender_agg":
{
"terms":
{
"field": "gender.keyword",
"size": 100
},
"aggs":
{
"balance_avg":
{
"avg":
{
"field": "balance"
}
}
}
},
"balance_avg":
{
"avg":
{
"field": "balance"
}
}
}
}
},
"size": 1000
}
3、Mapping
A、字段类型
B、映射
Mapping 是用来定义一个文档 (document),以及它所包含的属性 (field) 是如何存储和索引的。比如,使用 mapping 来定义:
- 哪些字符串属性应该被看做全文本属性 (full text fields)。
- 哪些属性包含数字,日期或者地理位置。
- 文档中的所有属性是否都能被索引 (_all 配置)。
- 日期的格式。
- 自定义映射规则来执行动态添加属性。
查看 mapping 信息:
GET bank/_mapping
修改 mapping 信息
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
自动猜测的映射类型
C、新版本改变
Es7 及以上移除了 type 的概念。
关系型数据库中两个数据表示是独立的,即使他们里面有相同名称的列也不影响使用,但 ES 中不是这样的。elasticsearch 是基于 Lucene 开发的搜索引擎,而ES 中不同type下名称相同的 filed 最终在 Lucene 中的处理方式是一样的。
两个不同 type 下的两个 user_name,在 ES 同一个索引下其实被认为是同一个filed,你必须在两个不同的 type 中定义相同的 filed 映射。否则,不同type 中的相同字段名称就会在处理中出现冲突的情况,导致 Lucene 处理效率下降。
去掉 type 就是为了提高 ES 处理数据的效率。
Elasticsearch 7.x
- URL 中的 type 参数为可选。比如,索引一个文档不再要求提供文档类型。Elasticsearch 8.x
- 不再支持 URL 中的 type 参数。
解决:
将索引从多类型迁移到单类型,每种类型文档一个独立索引
将已存在的索引下的类型数据,全部迁移到指定位置即可。详见数据迁移
创建映射
A、创建索引并指定映射
PUT /my-index
{
"mappings":
{
"properties":
{
"age": { "type": "integer" },
"email": { "type": "keyword" },
"name": { "type": "text" }
}
}
}
B、添加新的字段映射
PUT /my-index/_mapping
{
"properties":
{
"employee-id": { "type": "keyword", "index": false}
}
}
C、更新映射
对于已经存在的映射字段,我们不能更新。更新必须创建新的索引进行数据迁移
D、数据迁移
先创建出 new_twitter 的正确映射。然后使用如下方式进行数据迁移POST _reindex [固定写法]
{
"source": { "index": "twitter"},
"dest": { "index": "new_twitter"}
}
将旧索引的 type 下的数据进行迁移
POST _reindex
{
"source":
{
"index": "twitter",
"type": "tweet"
},
"dest":
{
"index": "tweets"
}
}