【参考课程】R语言入门与数据分析-基因学苑
数学统计函数
d: probability density function
p: probability distribution function
q: quantile 分位数,即分布函数的反函数
r: random 随机数,即服从分布函数的随机数
*在相应分布的R名称前加上上述前缀之一,得到相应函数
分布 | R 中的名称 | 附加参数 |
---|---|---|
beta | beta | shape1, shape2, ncp |
binomial | binom | size, prob |
Cauchy | cauchy | location, scale |
chi-squared | chisq | df, ncp |
exponential | exp | rate |
F | f | df1, df2, ncp |
gamma | gamma | shape, scale |
geometric | geom | prob |
hypergeometric | hyper | m, n, k |
log-normal | lnorm | meanlog, sdlog |
logistic | logis | location, scale |
negative binomial | nbinom | size, prob |
normal | norm | mean, sd |
Poisson | pois | lambda |
Student’s t | t | df, ncp |
uniform | unif | min, max |
Weibull | weibull | shape, scale |
Wilcoxon | wilcox | m, n |
round()
:取整
qqnorm()
:绘制正态分布图
runif(n, min, max)
:随机生成n个随机数,范围min-max,默认范围0-1
set.seed()
:对生成的随机数状态进行绑定,该状态下的生成随机数是一样的
描述性统计函数
summary()
:提供最大最小值、四分位数、中位数、均值
describe()
:提供上述统计量
pastecs
install.packages("pastecs")
library(pastecs)
stat.desc(mtcars[myvars]) # 返回描述性统计量
stat.desc(mtcars, basic = TRUE) # 再多返回一些计数统计,比如缺失值数量
stat.desc(mtcars, desc = TRUE) # 再多返回一些中位数、均值等
stat.desc(mtcars, norm = TRUE) # 再多返回一些正态统计值峰度、偏度等
psych
library(psych)
describe(mtcars[myvars])
describe(mtcars, trim = 0.1) # 去掉最高最低共10%的部分
Hmisc::describe(mtcars) # 同上
Notes:对于同名函数,默认使用下,新加载包会覆盖旧包。这时可以使用package::function来调用旧包里的该函数,当然也可以重新载入。
aggregate
library(MASS)
aggregate() # 将统计信息根据指定列表统计出来
aggregate(Cars93[c("Min.price", "Price", "Max.price", "MPG.city")],
by = list(Manufacturer = Cars93$Manufacturer), mean) # 分组方便,但一次只能返回一种统计值
doBy
library(doBy)
summaryBy(mpg+hp+wt ~ am, data = myvars, FUN = mean) # FUN可以用自定义函数
librart(psych)
describe.by(myvars, list(am = mtcars$am)) # 不能用自定义函数