7-10 哈利·波特的考试
哈利·波特要考试了,他需要你的帮助。这门课学的是用魔咒将一种动物变成另一种动物的本事。例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等。反方向变化的魔咒就是简单地将原来的魔咒倒过来念,例如ahah可以将老鼠变成猫。另外,如果想把猫变成鱼,可以通过念一个直接魔咒lalala,也可以将猫变老鼠、老鼠变鱼的魔咒连起来念:hahahehe。
现在哈利·波特的手里有一本教材,里面列出了所有的变形魔咒和能变的动物。老师允许他自己带一只动物去考场,要考察他把这只动物变成任意一只指定动物的本事。于是他来问你:带什么动物去可以让最难变的那种动物(即该动物变为哈利·波特自己带去的动物所需要的魔咒最长)需要的魔咒最短?例如:如果只有猫、鼠、鱼,则显然哈利·波特应该带鼠去,因为鼠变成另外两种动物都只需要念4个字符;而如果带猫去,则至少需要念6个字符才能把猫变成鱼;同理,带鱼去也不是最好的选择。
输入格式:
输入说明:输入第1行给出两个正整数N (≤100)和M,其中N是考试涉及的动物总数,M是用于直接变形的魔咒条数。为简单起见,我们将动物按1~N编号。随后M行,每行给出了3个正整数,分别是两种动物的编号、以及它们之间变形需要的魔咒的长度(≤100),数字之间用空格分隔。
输出格式:
输出哈利·波特应该带去考场的动物的编号、以及最长的变形魔咒的长度,中间以空格分隔。如果只带1只动物是不可能完成所有变形要求的,则输出0。如果有若干只动物都可以备选,则输出编号最小的那只。
输入样例:
6 11
3 4 70
1 2 1
5 4 50
2 6 50
5 6 60
1 3 70
4 6 60
3 6 80
5 1 100
2 4 60
5 2 80
输出样例:
4 70
代码长度限制 16 KB
时间限制 400 ms
内存限制 64 MB
解
这道题图嘛,图的最短路径问题,两种算法:Dijkstra(迪杰斯特拉)算法和Floyd(弗洛伊德)算法,前者求解指定两结点间最短路径,后者求解任意两结点间最短路径,显然,这道题就是后者了,其实核心就是一个三重循环,具体算法学习的话推荐书籍大话数据结构
,这里之间上代码(C++)了
#include<bits/stdc++.h>
#define M 105
using namespace std;
int inf = 1000000;
int n, m;
int d[M][M];
int main()
{
cin >> n >> m;
for(int i = 0; i <= n; i++) /// 邻接矩阵初始化
{
for(int j = 0; j <= n; j++)
{
if(i == j)
d[i][j] = 0;
else
d[i][j] = inf;
}
}
for(int i = 0; i < m; i++) /// 赋两个结点间的权值(魔咒的长度)
{
int a, b, w;
cin >> a >> b >> w;
d[a][b] = d[b][a] = w;
}
for(int k = 1; k <= n; k++) /// Floyd(弗洛伊德)算法
{
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
if(d[i][j] > d[i][k] + d[k][j])
d[i][j] = d[i][k] + d[k][j];
}
}
}
int minn = inf, maxx, index = 0;
for(int i = 1; i <= n; i++)
{
maxx = 0;
for(int j = 1; j <= n; j++) /// 找出i结点到各个结点最大的权
{
if(maxx < d[i][j])
maxx = d[i][j];
}
if(maxx < minn)
{
minn = maxx;
index = i;
}
}
if(index == 0)
cout << 0 << endl;
else
cout << index << " " << minn << endl;
return 0;
}