力扣 70. 爬楼梯
题目
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
提示:
1 <= n <= 45
解
我真的是十分惭愧,就这道题还是我面试时候的一道题,一下子真没想起来怎么做
根据题意, 我们可以知道爬n层楼梯的方法数== 爬n - 1层楼梯的方法数 + 爬 n - 2层楼梯的方法数
即
f(n) = f(n - 1) + f(n - 2)
这个没问题吧,、
好,那么我们分析它的其实值,如果n = 0, 那么就是说没楼梯,f(0) = 1;
n = 1, f(1) = 1;
ok, 这道题可以写了
/**
* @param {number} n
* @return {number}
*/
var climbStairs = function(n) {
let p = 0, q = 1, res = 0;
for(let i = 1; i <= n; i++) {
res = p + q;
p = q;
q = res;
}
return res;
};