描述
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
样例1
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
样例2
输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。
分析
字有点多,简单提炼一下重点:给定一个非负整数数组,相邻的数无法同时取出,想办法让取出的数的总和最大。
简单分析一下可知,若数组为空,则无法取出数,此时取出数的总和最大为0;
若数组中只有一个数,则取出数的总和最大为nums[0];
若数组中有两个数,则取出两个数中较大的数(因为无法同时取相邻的数),即取出数的总和最大为Math.max(nums[0],nums[1]);
若数组中的数大于2,则要判断nums[i]是否可以被取出,存在两种方案:
- 取出第i个数,则无法同时取出第i-1个数,则总数为前i-2个数中取出最多数的总和与第i个数的和
. - 不取出第i个数,则总数为前i-1个数中取出最多数的总和。
在两个方案中选出总数较大的方案,即是前i个数中取出数的最大总和,即dp[i]=max(dp[i−2]+nums[i],dp[i−1])
则最终答案是dp[n-1],n是数组最大长度。
代码
class Solution {
public int rob(int[] nums) {
if(nums==null||nums.length==0){
return 0;
}
int n=nums.length;
if(n==1){
return nums[0];
}
int[] dp=new int[n];
dp[0]=nums[0];
dp[1]=Math.max(nums[0],nums[1]);
for(int i=2;i<n;i++){
dp[i]=Math.max(dp[i-2]+nums[i],dp[i-1]);
}
return dp[n-1];
}
}
考虑到每个数的最高总和只和该数的前两个数的最高和相关,因此可以使用滚动数组,在每个时刻只需要存储前两个数的最高总和。优化后空间复杂度减少为O(1)。
class Solution {
public int rob(int[] nums) {
int len=nums.length;
if(nums==null||len==0){
return 0;
}
if(len==1){
return nums[0];
}
int a=nums[0];
int b=Math.max(nums[0],nums[1]);
int temp=0;
for(int i=2;i<len;i++){
temp=b;
b=Math.max(a+nums[i],b);
a=temp;
}
return b;
}
}