8-4图模拟 哥尼斯堡的“七桥问题” (25 分)
哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。
可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(Leonhard Euler,1707—1783)最终解决了这个问题,并由此创立了拓扑学。
这个问题如今可以描述为判断欧拉回路是否存在的问题。欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个无向图,问是否存在欧拉回路?
输入格式:
输入第一行给出两个正整数,分别是节点数N (1≤N≤1000)和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。
输出格式:
若欧拉回路存在则输出1,否则输出0。
输入样例1:
6 10
1 2
2 3
3 1
4 5
5 6
6 4
1 4
1 6
3 4
3 6
输出样例1:
1
输入样例2:
5 8
1 2
1 3
2 3
2 4
2 5
5 3
5 4
3 4
输出样例2:
0
思路:
一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。
代码:
#include<iostream>
using namespace std;
const int maxn = 1010;
int v[maxn];
int w[maxn][maxn];
int n,m;
int cnt;
bool Visit[maxn];
void dfs(int u)
{
cnt++;
Visit[u] = true;
for(int i=1;i<=n;i++){
if(w[u][i] == 1 && !Visit[i]){
dfs(i);
}
}
}
int main()
{
cin >> n >> m ;
for(int i=0;i<m;i++){
int a,b;
cin >> a >> b;
w[a][b] = w[b][a] = 1;
v[a] ++;
v[b] ++;
}
bool flag = true;
dfs(1);
if(cnt != n ) flag = false;
if(flag){
for(int i=1;i<=n;i++){
if(v[i]%2 == 1){
flag = false;
break;
}
}
}
if(flag) cout << 1 << endl;
else cout << 0 << endl;
return 0;
}