8-4图模拟 哥尼斯堡的“七桥问题” (25 分)

						8-4图模拟 哥尼斯堡的“七桥问题” (25 分)

哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。

在这里插入图片描述

可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(Leonhard Euler,1707—1783)最终解决了这个问题,并由此创立了拓扑学。

这个问题如今可以描述为判断欧拉回路是否存在的问题。欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个无向图,问是否存在欧拉回路?

输入格式:

输入第一行给出两个正整数,分别是节点数N (1≤N≤1000)和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。

输出格式:

若欧拉回路存在则输出1,否则输出0。

输入样例1:

6 10
1 2
2 3
3 1
4 5
5 6
6 4
1 4
1 6
3 4
3 6

输出样例1:

1

输入样例2:

5 8
1 2
1 3
2 3
2 4
2 5
5 3
5 4
3 4

输出样例2:

0

思路:

一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。

代码:

#include<iostream>
using namespace std;
const int maxn = 1010;
int v[maxn];
int w[maxn][maxn];
int n,m;
int cnt;
bool Visit[maxn];
void dfs(int u)
{
    cnt++;
    Visit[u] = true;
    for(int i=1;i<=n;i++){
        if(w[u][i] == 1 && !Visit[i]){
            dfs(i);
        }
    }
}
int main()
{
    cin >> n >> m ;
    for(int i=0;i<m;i++){
        int a,b;
        cin >> a >> b;
        w[a][b] = w[b][a] = 1;
        v[a] ++;
        v[b] ++;
    }
    bool flag = true;
    dfs(1);
    if(cnt != n ) flag = false;
    if(flag){
        for(int i=1;i<=n;i++){
            if(v[i]%2 == 1){
                flag = false;
                break;
            }
        }
    }
    if(flag) cout << 1 << endl;
    else cout << 0 << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rain Sure

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值