很经典的背包问题求具体方案 并给定一个字典序的要求 相信各位OIer或者ACMer都已经不愿意看这种简单题了
题目描述:
题解:
如果题目不要求输出方案,这题可能就是一道10分的背包小题,既然它问具体方案了,那么就需要我们好好思考一下了!
如何求出字典序最小的方案呢?我们可以先将给定的硬币按照面值从小到大排个序,然后按照逆序跑一遍01背包。
我们输出方案时,判断某个硬币是否应该被选择时,需要从前向后的考虑,如果可以选择它,那么我们一定选它,可以贪心证明出此时字典序一定小于不选它的字典序;现在问题就转化为如何判断可以选择它呢?
我们只需要根据DP时的状态转移来判断就可以了,如果选择该硬币可以凑出需要的面额求它在状态标识中被选择,那么我们就一定选它!
说的也不是很清楚,大家看代码就明白了!
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 10010;
int f[maxn][110];
int n, m;
int a[maxn];
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i ++) cin >> a[i];
sort(a + 1, a + n + 1);
f[n + 1][0] = 1;
for(int i = n; i >= 1; i --)
{
for(int j = 0; j <= m; j ++){
f[i][j] = f[i + 1][j];
if(j >= a[i]) f[i][j] |= f[i + 1][j - a[i]];
}
}
if(!f[1][m]) cout << "No Solution" << endl;
else
{
int j = m;
vector<int> res;
for(int i = 1; i <= n; i ++){
if(j - a[i] >= 0 && f[i + 1][j - a[i]] == f[i][j] && f[i][j]){
j -= a[i];
res.push_back(a[i]);
}
}
for(int i = 0; i < res.size(); i ++) {
if(i != 0) cout << " ";
cout << res[i];
}
}
return 0;
}