博客摘录「 BCI Competition IV 2a数据集介绍」2023年12月10日

点开第一次Run,也就是data{1,4},可以看到如下内容:其中X矩阵为本次Run中48次trials采集到的具体数据值,共有25个通道

对一次RUN中X矩阵(数据量)的解释

data{1,4}表明是第一行第四列的数据,即第一个被试者再一次RUN中的数据

总:每个通道一次测试,大约采集到(8s*250Hz)2000个数据,那总共25个通道,所以被试者一次测试,总共产生2000*25=50000

X=96000*25:第一个受试者在一次RUN(即48次测试trial)中产生的数据量:每次测试持续时间8s,而对脑电信号的采样频率是250Hz,所以一个通道一次测试产生的数据量为250*8=2000,48次测试数据量为20000*48=96000,所以25个通道经过48次测试产生的数据量为96000*25

### BCI Competition IV 2a 数据降维方法 对于BCI Competition IV 2a数据集中的图(EEG)信号,由于其高维度特性,在实际应用中通常需要对其进行降维处理来减少计算复杂度并提高模型性能。常用的方法和技术包括主成分分析(PCA)、线性判别分析(LDA),以及更复杂的特征提取技术如共空间模式(CSP)[^1]。 #### 主成分分析 (PCA) PCA是一种无监督学习算法,通过正交变换将一组可能存在相关性的变量转换成一组线性不相关的变量,称为“主成分”。这些主成分按照方差大小排列,前几个主成分能够保留原始数据的主要信息。在MATLAB中实现PCA可以利用内置函数`pca()`: ```matlab % 加载数据 load('A01T.mat'); % 示例加载单个受试者的一个运行记录 X = data.X; % 获取 EEG 数据矩阵 % 执行 PCA [coeff,score,latent] = pca(X'); % 可视化结果 explained_variance_ratio = cumsum(latent)./sum(latient); plot(explained_variance_ratio,'-o'); xlabel('Principal Component Index'); ylabel('Cumulative Explained Variance Ratio'); title('Explained Variance by Principal Components'); ``` 此代码片段展示了如何使用MATLAB自带的`pca()`函数来进行PCA操作,并绘制累积解释方差比例图表以评估所需保持的信息量。 #### 线性判别分析 (LDA) 不同于PCA,LDA属于有监督的学习方式,它不仅考虑了样本间的差异也关注类别之间的区别。因此当目标是分类任务时,LDA往往比PCA更适合用于降维。可以通过MATLAB Statistics Toolbox提供的`fitcdiscr()`函数轻松完成这一过程: ```matlab % 准备标签向量 y 和对应的训练数据 X_train y = data.y; X_train = score(:,1:k); % 使用PCA得到的结果作为输入,k为主成分数量 ldaModel = fitcdiscr(X_train,y); % 对测试集进行预测 predictedLabels = predict(ldaModel,X_test); confusionchart(y,predictedLabels); ``` 这段脚本说明了怎样基于之前获得的PCs构建一个简单的二类或多类分类器,并展示混淆矩阵以便直观理解分类效果。 #### 共空间模式 (CSP) 针对特定类型的机接口问题,尤其是运动想象范式的EEG数据分析,CSP被证明是非常有效的预处理工具之一。这种方法旨在找到一对滤波器使得两类试验之间功率对比最大化。下面给出了一种简化版CSP实现方案: ```matlab function W = csp(X1,X2) R1 = cov(X1.'); % 计算协方差矩阵 R2 = cov(X2.'); [V,D]=eig(R1,R1+R2); % 解广义特征值问题 [~,idx] = sort(diag(D),'descend'); % 排序特征值 V=V(:,idx); W = V'; % 得到投影矩阵W end ``` 上述自定义函数接受两个参数——分别代表不同条件下的多通道时间序列数据;返回的是最优的空间过滤权重向量集合\[W\][^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值