索引只是提高效率的一个因素,因此在建立索引的时候应该遵循以下原则:
- 在经常需要搜索的列上建立索引,可以加快搜索的速度。
- 在作为主键的列上创建索引,强制该列的唯一性,并组织表中数据的排列结构。
- 在经常使用表连接的列上创建索引,这些列主要是一些外键,可以加快表连接的速度。
- 在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,所以其指定的范围是连续的。
- 在经常需要排序的列上创建索引,因为索引已经排序,所以查询时可以利用索引的排序,加快排序查询。
- 在经常使用 WHERE 子句的列上创建索引,加快条件的判断速度。
数据库系统中除了常用的B树索引,还有其他几种树形索引结构,每种都有其独特的优缺点和使用场景。这些索引包括但不限于哈希索引、R树索引、位图索引和GiST索引等。以下是一些常见的树形索引及其特点:
1. B+树索引
- 优点:与B树类似,B+树也保持平衡,但它将所有记录指针都保存在叶节点,并且叶节点通过指针相互连接,这使得范围查询更加高效。
- 缺点:由于所有数据条目都存储在叶子节点中,所以可能需要更多的页面读取操作,尤其是在查找非范围查询时。
2. R树索引
- 优点:非常适合存储和查询地理空间数据,如地图上的矩形或多边形。R树通过在高维空间中组织对象来优化空间查询。
- 缺点:更新操作复杂且成本较高,因为添加或删除元素可能需要重新平衡树。
3. 哈希索引
- 优点:对于等值查询,哈希索引提供了极快的访问速度。哈希表能够直接计算出数据存储的位置,从而快速定位。
- 缺点:不支持范围查询。哈希索引的性能严重依赖于哈希函数的质量,不良的哈希函数可能导致大量的哈希冲突,从而降低索引效率。
4. GiST(Generalized Search Tree)索引
- 优点:非常灵活,可以用于多种数据类型,支持创建自定义索引,如地理信息系统(GIS)数据的索引。
- 缺点:比起专门化的索引结构,GiST索引的性能可能会稍逊一筹,因为其通用性导致无法针对特定数据类型优化。
5. T树索引
- 优点:在内存数据库系统中表现良好,因为它是为存储在RAM中的数据设计的,结构紧凑,可以有效利用缓存。
- 缺点:不适合传统的基于磁盘的数据库系统,因为T树对内存依赖高,不适合大量数据的情况。
6. 位图索引
- 优点:非常适合具有少量唯一值的列(如性别、状态等),查询速度快,占用空间少。
- 缺点:对于具有大量唯一值的列效率低,更新成本高,适用于查询多而更新少的数据场景。
遗憾的是msql不支持位图索引