1、Numpy创建
A=np.array([[1,2,3],[4,5,6]])
#两行三列的列表
#类型为n维列表
Z=np.zeros((3,2))
#3行2列的全0矩阵
Z1=np.zeros([3,5])
#3行5列全0矩阵
#全1矩阵
np.ones([3,5])
o=np.ones((3,2,3))
#np.ones((行、列、页))
可以通过输入np.发现更多创建numpy的函数
2、索引
A[1,2] #索引从0开始 第二行第三个数字
3、切片
A[:1,:2]
#结果:array([[1, 2]])
A[1,:2]
#结果:array([4, 5])
#这两个维度不一样,可以通过shape进行查看
4.运算
乘法
T=A.T #转置
#有的运算会影响到原矩阵 转置不会影响
np.multiply(A,T) #这个会报错 这是算原数对原数 就是要有相同行数和列数
np.multiply(A,A) #这个可以运行
np.dot(A,T) #这个就是线性代数里面的矩阵乘积(A的每一列和T的每一行乘积)
最大值
A.max(axis=0)
#array([4, 5, 6]) 1和4,2和5,3和6
#axis是维度的意思
A.max(axis=1)
#array([3, 6]) 1,2,3相比;4,5,6相比
A.max()
#输出最大值6
其它统计函数
std是标准差;var是方差
同样也可以通过A.查看更多统计函数的使用
5、重排
A.reshape((3,2)) #重排 默认order='C'
A.reshape((3,2),order='F') #列优先
A.reshape((3,2),order='C') #行优先
6、线性代数运算
R=np.random.rand(3,3)
np.linalg.det(R) #线性代数运算行列式
r,v=np.linalg.eig(R) #r是特征根和v是特征向量
可以通过输入np.linalg.查看更多线性代数运算