Numpy简单学习(Spyder)

本文详细介绍了如何使用Numpy创建数组,包括零矩阵、全1矩阵和三维数组。此外,涵盖了索引、切片、基本运算(如矩阵乘法)、统计函数(如最大值)、矩阵重排、线性代数运算(如行列式和特征值分解),以及关键概念的实战演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、Numpy创建

A=np.array([[1,2,3],[4,5,6]])
#两行三列的列表
#类型为n维列表

  

Z=np.zeros((3,2))
#3行2列的全0矩阵
Z1=np.zeros([3,5])
#3行5列全0矩阵

  

#全1矩阵
np.ones([3,5])

  

o=np.ones((3,2,3))
#np.ones((行、列、页))

  

可以通过输入np.发现更多创建numpy的函数

2、索引

A[1,2]  #索引从0开始 第二行第三个数字

  3、切片

A[:1,:2]
#结果:array([[1, 2]])  
A[1,:2]
#结果:array([4, 5])   

#这两个维度不一样,可以通过shape进行查看

 4.运算

乘法

T=A.T #转置
#有的运算会影响到原矩阵  转置不会影响

np.multiply(A,T) #这个会报错  这是算原数对原数 就是要有相同行数和列数 
np.multiply(A,A) #这个可以运行

np.dot(A,T) #这个就是线性代数里面的矩阵乘积(A的每一列和T的每一行乘积)

最大值

A.max(axis=0)
#array([4, 5, 6])  1和4,2和5,3和6

#axis是维度的意思

A.max(axis=1)
#array([3, 6])  1,2,3相比;4,5,6相比

A.max()
#输出最大值6

 

 其它统计函数

 std是标准差;var是方差

同样也可以通过A.查看更多统计函数的使用

5、重排 

A.reshape((3,2))  #重排  默认order='C'

A.reshape((3,2),order='F') #列优先

A.reshape((3,2),order='C') #行优先

 6、线性代数运算

R=np.random.rand(3,3)

np.linalg.det(R)  #线性代数运算行列式

r,v=np.linalg.eig(R)  #r是特征根和v是特征向量

 

 可以通过输入np.linalg.查看更多线性代数运算

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值