【数据结构】哈夫曼树及哈夫曼编码实现

1. 哈夫曼树

1.1 基本概念

路径:指从根结点到该结点的分支序列。
路径长度:指根结点到该结点所经过的分支数目。
结点的带权路径长度:从树根到某一结点的路径长度与该结点的权的乘积。
树的带权路径长度(WPL):树中从根到所有叶子结点的各个带权路径长度之和。
哈夫曼树是由 n 个带权叶子结点构成的所有二叉树中带权路径长度最短的二叉树,又称最优二叉树。如图中第三棵树就是一棵哈夫曼树。
在这里插入图片描述

1.2 构造哈夫曼树

构造哈夫曼树的算法步骤:
① 初始化:用给定的 n 个权值{w1,w2,…,wn}构造 n 棵二叉树并构成的森林F={T1,T2,…,Tn},其中每一棵二叉树Ti(1<=i<=n)都只有一个权值为 wi 的根结点,其左、右子树为空。
② 找最小树:在森林 F 中选择两棵根结点权值最小的二叉树,作为一棵新二叉树的左、右子树,标记新二叉树的根结点权值为其左、右子树的根结点权值之和。
③ 删除与加入:从 F 中删除被选中的那两棵二叉树,同时把新构成的二叉树加入到森林 F 中。
④ 判断:重复②、③操作,直到森林中只含有一棵二叉树为止,此时得到的这棵二叉树就是哈夫曼树。
简单的说就是先选择权小的,所以权小的结点被放置在树的较深层,而权较大的离根较近,这样一来所构成的哈夫曼树就具有最小带权路径长度。

例如给定5个权值{2,3,5,7,8},构造过程如下:
在这里插入图片描述

注意:由于未规定左右子树顺序,因此哈夫曼树不唯一,但树的最小带权路径长度唯一。如下图两棵树都是根据5个权值{2,3,5,7,8}构造的哈夫曼树:

1.3 哈夫曼树的类型定义

哈夫曼树是一种二叉树,其中没有度为1的结点,因此一棵有 n 个叶子的哈夫曼树共有 2n-1 个结点,可以用一个大小为 2n-1 的一维数组来存放哈夫曼树的各个结点。由于每个结点同时还包含其双亲信息和孩子结点的信息,所以构成一个静态三叉链表。
在这里插入图片描述

/*哈夫曼树的类型定义*/
# define N 30						//叶子结点的最大值
# define M 2 * N - 1				//所有结点的最大值

typedef struct {
	int weight;						//结点的权值
	int parent;						//双亲的下标
	int LChild;						//左孩子结点的下标
	int RChild;						//右孩子结点的下标
}HTNode, HuffmanTree[M + 1];		//HuffmanTree是一个结构数组类型,0号单元不用

1.4 哈夫曼树创建的算法实现

基于上文中的构造哈夫曼树的步骤,代码如下:

/*在ht[1]至ht[n]的范围内选择两个parent为0且weight最小的结点,其序号分别赋给s1,s2*/
void Select(HuffmanTree ht, int n, int* s1, int* s2) {
	int i, min1 = MAX, min2 = MAX;
	*s1 = 0;
	*s2 = 0;
	for (i = 1; i <= n; i++) {
		if (ht[i].parent == 0) {
			if (ht[i].weight < min1) {
				min2 = min1;
				*s2 = *s1;
				min1 = ht[i].weight;
				*s1 = i;
			}
			else if (ht[i].weight < min2) {
				min2 = ht[i].weight;
				*s2 = i;
			}
		}
	}
}

/*创建哈夫曼树算法*/
void CrtHuffmanTree(HuffmanTree ht, int w[], int n) {
//构造哈夫曼树ht[M+1],w[]存放n个权值
	int i;
	for (i = 1; i <= n; i++) {		//1至n号单元存放叶子结点,初始化
		ht[i].weight = w[i - 1];
		ht[i].parent = 0;
		ht[i].LChild = 0;
		ht[i].RChild = 0;
	}
	int m = 2 * n - 1;				//所有结点总数
	for (i = n + 1; i <= m; i++) {	//n+1至m号单元存放非叶结点,初始化
		ht[i].weight = 0;
		ht[i].parent = 0;
		ht[i].LChild = 0;
		ht[i].RChild = 0;
	}

	/*初始化完毕,开始创建非叶结点*/
	int s1, s2;
	for (i = n + 1; i <= m; i++) {	//创建非叶结点,建哈夫曼树
		Select(ht, i - 1, &s1, &s2);//在ht[1]至ht[i-1]的范围内选择两个parent为0且weight最小的结点,其序号分别赋给s1,s2
		ht[i].weight = ht[s1].weight + ht[s2].weight;
		ht[s1].parent = i;
		ht[s2].parent = i;
		ht[i].LChild = s1;
		ht[i].RChild = s2;
	}
}

2. 哈夫曼编码实现

2.1 哈夫曼编码

对一棵具有n个叶子结点的哈夫曼树,若对树中的每个左分支赋0,右分支赋1(或左1右0),则从根到每个叶子的通路上,各个分支的赋值分别构成一个二进制串,该二进制串就称为哈夫曼编码。哈夫曼编码是最优前缀编码,能使各种报文对应的二进制串的平均长度最短。

例如要传送数据“state,seat,act,tea,cat,set,a,eat”,先统计各个字符出现的次数:
字符 c s e a t
字符出现的次数 2 3 5 7 8

将出现次数当作权构造哈夫曼树,并按左0右1规则对分支赋值:
在这里插入图片描述
则各字符的哈夫曼编码为:

字符 c s e a t
字符出现的次数 2 3 5 7 8
哈夫曼编码 010 011 00 10 11
可以看出使用频率越高的字符编码长度越短。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值