天玑810和天玑920哪个好

天玑 920天玑810型号 制作工艺6nmCPU架构2.5GHz 大核A78*22.0GHz ?小核A55x6四个Arm Cortex-A76(2.4GHz)大核四个Arm Cortex-A55(2.0GHz)小核GPU参数ARM Mali-G68Mali-G57 MC2网络参数集成Helio M70集成5G基带
选天玑810还是天玑920这些点很重要 http://www.adiannao.cn/7
二、性能分析
天玑920的主要特性如下:

MediaTek智能刷新率显示: 可根据游戏或系统UI智能调整显示刷新率,例如动态提高显示刷新率,以增强用户的交互体验,或是在需要时降低刷新率以提高电源能效。
硬件级4K HDR视频拍摄引擎:搭载旗舰级HDR ISP和MediaTek硬件级4K HDR视频拍摄引擎,支持1.08亿像素四摄组合,提升影像创作体验。

强劲性能:天玑920的八核心CPU包含主频为2.5GHz的ARM Cortex-A78大核,支持LPDDR5内存和UFS 3.1闪存,为终端提供强劲性能。

先进的网络连接:支持双卡5G待机、双卡VoNR通话服务、5G双载波聚合,集成2x2 MIMO Wi-Fi 6、蓝牙5.2和多频GNSS,配合MediaTek 5G UltraSave省电技术可进一步5G使用体验。

畅爽游戏:天玑920支持MediaTek HyperEngine 3.0游戏引擎,先进的来电不断网技术支持游戏通话双卡并行,5G高铁和超级热点模式可帮助用户飞速驰骋游戏世界。
在这里插入图片描述

天玑810

作为天玑8系列的新成员,天玑810比较特别,它采用了台积电6nm制程工艺,较之家族前辈的7nm工艺,天生就具备更好的能效比。

天玑810依旧采用ARM Cortex-A76架构,2.4GHz的主频和和天玑800U相同,但其集成的Mali-G57MC2 GPU却是家族中最差。因此,它的实际性能表现不会比天玑800U好多少,但理论上可以获得更持久的续航和更低的发热量。
天玑810的主要特性如下:

高能效表现:天玑810的八核CPU包含主频为2.4GHz的ARM Cortex-A76核心,采用先进的6nm制程,充分发挥平台性能并实现低功耗。

流畅显示:支持120Hz刷新率全高清FHD+显示,为用户带来更流畅的视觉观感。

出色影像:支持先进的降噪技术(MFNR和MCTF),可在暗光环境下实现出色的成像效果,并支持高达6400万像素的摄像头。

AI相机功能:与虹软科技(ArcSoft)合作,为终端提供AI景深增强、AI色彩等先进的相机功能,可创作更精彩的影像作品。

游戏引擎:支持MediaTek HyperEngine 2.0游戏引擎,可通过调用网络引擎、智能负载调控引擎,为玩家带来沉浸式的游戏体验。

Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值