来源:牛客网
题目描述 由于你帮助 Alice 回答得非常好,Sept 又找到了 Bob,希望能难倒他。 他给了要求 Bob 组成一个长度为 nnn 的新的数列 aaa,其中数列 aaa 的每一个元素ai都有k个取值。
求所有可能的数列a中的最长上升子序列的的最大长度。 由于 Sept 怕题目钛难,所以他答应 Bob,对于每个i,k个取值不降。
输入描述: 第一行两个数 k,n,意义如题述。 接下来n行,每行k个数,即ai的k个取值。
输出描述: 仅一行一个整数,即所有可能的数列 aaa 中的最长上升子序列的最大长度。
示例1
输入
2 2
1 3
1 2
输出 2对于100%的数据,有 1<=k<=5000,1<=n<=1000,每个取值都是非负数,不超过1000
这是牛客IOI月赛28未解决的历史问题。之前一直有些害怕这个题目 毕竟据说通过率只有5%左右 ,但现在看了思路感觉很简单。其实,只要把输入的二维数组每一行倒序存储在一维数组中,然后再套用LIS模板即可。
由于原输入是从小到大,倒序以后就是从大到小。如果从原数组中的每一行中选取了>=2个元素,那么序列就不是上升的了。因此原数组中的每一行在LIS中至多出现一个元素。
代码如下:
int LIS(int k,int n) {
int len=0;
dp[0]=0;
for(int i=0; i<n*k; i++) {
if(a[i]>dp[len]) {
dp[++len]=a[i];
}
else {
int loc=lower_bound(dp,dp+len,a[i])-dp;
dp[loc]=a[i];
}
}
return len;
}
int main() {
//省略输入及初始化dp[]的过程
for(int i=1; i<=n; i++) {
for(int j=0; j<k; j++) scanf("%d",&a[(i-1)*k+j]);
reverse(a+k*(i-1),a+k*(i-1)+k);
}
printf("%d",LIS(k,n));
return 0;
}