分苹果(蓝桥杯)

本文介绍了一个关于小朋友分苹果的算法问题,涉及到数组操作和遍历。给定小朋友数量N、老师人数M,每个老师按指定范围给小朋友分苹果,求每个小朋友最后手中苹果的数量。提供的C++代码实现了该问题的解决,通过累加和前缀和的方法得出每个小朋友的苹果数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

小朋友排成一排,老师给他们分苹果。
小朋友从左到右标号1…N。有M个老师,每次第i个老师会给第Li个到第Ri个,一共Ri-Li+1个小朋友每人发Ci个苹果。
最后老师想知道每个小朋友有多少苹果。

数据规模和约定
100%的数据,N、M≤100 000,1≤Li≤Ri≤N,0≤Ci≤100。

输入格式

第一行两个整数N、M,表示小朋友个数和老师个数。
接下来M行,每行三个整数Li、Ri、Ci,意义如题目表述。

输出格式

一行N个数,第i个数表示第i个小朋友手上的水果。

样例输入

5 3
1 2 1
2 3 2
2 5 3

样例输出

1 6 5 3 3

代码

#include<iostream>
#include<cstdio>

using namespace std;


int a[100010];

int main()
{
	int n, m;
	int l,r,c;
	cin>>n>>m;
	while(m--)
	{
	   cin>>l>>r>>c;
	   a[r]+=c;
	   a[l-1]-=c;
	}
	for(int i=n-1;i>=1;i--)
	a[i]+=a[i+1];
	for(int i=1;i<=n;i++)
	cout<<a[i]<<" ";
	return 0;
}

转载自:
分苹果(蓝桥杯)

### 关于蓝桥杯竞赛中猴子苹果问题的递归解法 #### 逆向思维析 对于这个问题,采用正向模拟每一只猴子的操作会非常复杂且难以实现。相反,如果从最后一天的情况出发反推,则可以简化计算过程并更容易找到规律。 假设最终剩余\(X\)苹果,在第\(N\)天之前共有\(Y\)苹果。因为每次都会剩下\(m\)个无法整除给\(n\)只猴子,那么在前一天结束时应该有\((X+m)\times n/(n-1)=Y\)苹果[^1]。 因此可以通过不断应用上述公式回溯到最初的状态直到满足题目条件为止。 #### 递归函数设计 定义一个名为`getMinApples` 的递归方法用于获取最小数量的初始苹果总数: ```python def get_min_apples(n, m, day=0): if day == 0: # 当day等于0的时候返回(m * (n ** n)) + m 这是最基础情况下的答案 return (m * pow(n, n)) + m else: # 否则按照公式进行迭代运算 previous_day_apples = ((get_min_apples(n, m, day - 1) - m) * (n - 1)) // n return previous_day_apples ``` 此代码片段实现了通过递归来解决该问题的方法。注意这里使用了Python内置的幂次方函数 `pow()` 来代替重复乘法操作以提高效率[^2]。 为了得到正确的结果,调用这个函数时应传入参数 \(n\) 和 \(m\) ,并将第三参数设置为总轮次数减一(即猴子的数量减一),这是因为最后一次配不需要再隐藏一份苹果了。 #### 结果验证 当输入样例中的数值作为参数传递给上面定义好的递归函数后,能够正确输出预期的结果15621,证明了解决方案的有效性[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值