- 博客(9)
- 收藏
- 关注
原创 0基础租服务器训练yolov5
输入conda activate yolov5 出现这样,换指令 source activate yolov5。5.安装好以后,使用python detect.py H环境安装成功,,这里需要注意使用的cpu。7. 默认使用的官方数据集 想用自己的数据 按照官方的去仿制即可。3 下载yolov5 的源码,然后上传。1 使用的是autodl 服务器。先使用cd 切到项目的路径下。激活环境 yolov5。4 解压 unzip。安装的环境包 ,打开文件。2.选择好了立即创建。
2024-08-05 09:50:20 402
原创 yolov5的环境以及数据集的训练介绍
因为我的yolov5 所在的路径是桌面的那个 如下图即可使用 pip install -r requirements.txt 即可完成安装。3.安装所需环境 如果电脑不支持gpu 直接安装环境可以用cpu训练,如果需要安装pytorch,去pytorch 官网。执行这个会下载yolov5s.pt 权重 ,如果下载的慢,去github上下载,下载好放到和detect.py的同级目录下。data 是数据的配置文件,训练自己的数据集,路径建议使用绝对路径。执行train.py 开始训练。
2024-07-18 15:52:58 249
原创 yolov9 cpu环境配置
关于训练部分(如果电脑只有cpu的话建议把参数做一下修改)batch-size 改为1 workers改为0。1.官方下载yolov9 下载好以后记得解压(github进不去的话可以借助于镜像进去,网上可以搜到)9.环境安装完成在pycharm中配置已经安装的环境(在设置里面找)修改名字(运行detect.py出现如下错误)直接复制错误修改。3.使用miniconda 进行环境的创建(管理员模式运行)修改好错误然后再运行 出现如下结果环境配置成功。点击确定然后点击应用和确定环境就找到了。
2024-04-30 14:40:21 414
原创 yolov5 cpu环境配置
7.等待环境安装好,下载权重文件一般使用的是(yolov5s-pt)检测环境安装成功没,使用python detect.py。6.使用pip install -r requirements.txt 安装即可。激活环境(因为我的环境已存在yolov5 新的环境yolov51)5.使用切盘命令cd /d +路径,进入yolov5的项目下。1.先从github上下载yolov5的项目。4.打开miniconda 创建环境。百度搜索pypi帮助(选择划线的)3.解压yolov5的项目。这样就说明环境配置成功。
2024-04-29 17:43:15 420
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人