小波变换(一)

在正文开始前,先怂一下,我在搞大创项目时,涉及到小波变换这块知识点,我没有学过这方面的知识,所以小波变换这方面的知识我也是初步了解,这两篇文章可供非专业的做初步了解,专业的话就不要看了,毕竟我这也不专业
博客参考以下文章:
1.作 者:韩 昊
知 乎:Heinrich
微 博:@花生油工人
知乎专栏:与时间无关的故事
2.作者:咚懂咚懂咚
链接:http://www.zhihu.com/question/22864189/answer/40772083
来源:知乎

1.平稳信号与非平稳信号

在介绍主体之前,先要说下平稳信号与非平稳信号的区别。平稳信号是指分布参数或者分布律随时间不发生变化的信号。也就是说,平稳信号的统计特性不随时间变化而变化。 如下图所示:
在这里插入图片描述
而与之相反的是非平稳信号是指分布参数或者分布律随时间发生变化的信号。 也就是说,非平稳随机信号的统计特征是时间的函数(随时间变化),如下图所示:
在这里插入图片描述
放在信号的时频分析中,我们可以简单地理解为,平稳信号的频率不随时间发生改变,而非平稳信号的频率随时间发生变化。

2.时域频域

1、时域(时间域)——自变量是时间,即横轴是时间,纵轴是信号的变化。其动态信号x(t)是描述信号在不同时刻取值的函数。

2、频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。
下面是图文讲解:
在这里插入图片描述
图1是正弦波的时域图,示出了振幅与时间的关系。

在时域图中,横轴是时间,纵轴是振幅。时域图显示振幅随时间的变化,可以看出峰值振幅为5V,可以算出频率f=6 Hz。
在这里插入图片描述
图2是图1中正弦波的频域图

在频域图中,横轴是频率,纵轴是峰值振幅。频域图仅仅示出峰值振幅与频率,而不显示振幅随时间的变化。
从频域图可以看出,正弦波的频率为6Hz,这个6Hz的正弦波的峰值振幅为5V 。

频域图的优点是,从频域图中,可以一眼看出正弦波的频率和峰值振幅,整个正弦波在频域图上只是一个立柱,立柱的位置显示了正弦波的频率,立柱的高度显示了正弦波的峰值振幅

为什么要进行信号的变换?
我们经常接触到的信号,正弦信号,余弦信号,甚至是复杂的心电图、脑电图、地震波信号都是时域上的信号,我们也成为原始信号,但是通常情况下,我们在原始信号中得到的信息是有限的,所以为了获得更多的信息,我们就需要对原始信号进行数学变换,得到变换域的信号。

3.傅里叶变换

定义:傅立叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。简明的说傅里叶变换是时域与频率之间的转换,通常,我们可以容易的从频域中看到一些在时域中看不到的信息。
傅里叶级数(Fourier Series)的频谱:
在这里插入图片描述
在这里插入图片描述:
第一幅图是一个郁闷的正弦波 cos(x)
第二幅图是 2 个卖萌的正弦波的叠加 cos (x) +a.cos (3x)
第三幅图是 4 个恋爱的正弦波的叠加
第四幅图是 10 个便秘的正弦波的叠加
随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形。随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个正弦波叠加起来才能形成一个标准 90 度角的矩形波呢?不幸的告诉大家,答案是无穷多个。
还是上图的正弦波累加成矩形波,我们换一个角度来看看:
在这里插入图片描述
在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅都是不同的。一定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为 0 的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。

这里,不同频率的正弦波我们成为频率分量。

好了,关键的地方来了!!
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为 0 的正弦波。

傅里叶变换的弊端

做完FFT(快速傅里叶变换)后,可以在频谱上看到清晰的四条线,信号包含四个频率成分。
一切没有问题。但是,如果是频率随着时间变化的非平稳信号呢?
在这里插入图片描述
我们发现这三个时域上有巨大差异的信号,频谱(幅值谱)却非常一致。
因此,傅里叶变换处理非平稳信号有天生缺陷。它只能获取一段信号总体上包含哪些频率的成分,但是对各成分出现的时刻并无所知。因此时域相差很大的两个信号,可能频谱图一样。

4.短时傅里叶变换(Short-time Fourier Transform, STFT)

一个简单可行的方法就是——加窗。把整个时域过程分解成无数个等长的小过程,每个小过程近似平稳,再傅里叶变换,就知道在哪个时间点上出现了什么频率了。”这就是短时傅里叶变换。
看图:
在这里插入图片描述
时域上分成一段一段做FFT,不就知道频率成分随着时间的变化情况了吗!用这样的方法,可以得到一个信号的时频图了:
在这里插入图片描述——此图像来源于“THE WAVELET TUTORIAL”图上既能看到10Hz, 25 Hz, 50 Hz, 100 Hz四个频域成分,还能看到出现的时间。两排峰是对称的,所以大家只用看一排就行了。

是不是棒棒的?时频分析结果到手。但是STFT依然有缺陷。使用STFT存在一个问题,我们应该用多宽的窗函数?窗太宽太窄都有问题:
在这里插入图片描述
在这里插入图片描述窗太窄,窗内的信号太短,会导致频率分析不够精准,频率分辨率差。窗太宽,时域上又不够精细,时间分辨率低。
(这里插一句,这个道理可以用海森堡不确定性原理来解释。类似于我们不能同时获取一个粒子的动量和位置,我们也不能同时获取信号绝对精准的时刻和频率。这也是一对不可兼得的矛盾体。我们不知道在某个瞬间哪个频率分量存在,我们知道的只能是在一个时间段内某个频带的分量存在。 所以绝对意义的瞬时频率是不存在的。)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述——此图像来源于“THE WAVELET TUTORIAL”
上图对同一个信号(4个频率成分)采用不同宽度的窗做STFT,结果如右图。用窄窗,时频图在时间轴上分辨率很高,几个峰基本成矩形,而用宽窗则变成了绵延的矮山。但是频率轴上,窄窗明显不如下边两个宽窗精确。

所以窄窗口时间分辨率高、频率分辨率低,宽窗口时间分辨率低、频率分辨率高。对于时变的非稳态信号,高频适合小窗口,低频适合大窗口。然而STFT的窗口是固定的,在一次STFT中宽度不会变化,所以STFT还是无法满足非稳态信号变化的频率的需求。

5.小波变换

那么你可能会想到,让窗口大小变起来,多做几次STFT不就可以了吗?!没错,小波变换就有着这样的思路。
但事实上小波并不是这么做的,至于为什么不采用可变窗的STFT呢,我认为是因为这样做冗余会太严重,STFT做不到正交化,这也是它的一大缺陷。

于是小波变换的出发点和STFT还是不同的。STFT是给信号加窗,分段做FFT;而小波直接把傅里叶变换的基给换了——将无限长的三角函数基换成了有限长的会衰减的小波基。这样不仅能够获取频率,还可以定位到时间了。

“小波”就是小区域、长度有限、均值为0的波形。小波变换就是选择适当的基本小波或母小波ψ(t),通过对基本小波的平移、伸缩而形成一系列的小波(缩得窄,对应高频;伸得宽,对应低频)。这簇小波作为基可以构成一系列嵌套的(信号)子空间,然后将欲分析的信号(例如图像)投影到各个大小不同的(信号)子空间之中(基函数不断和信号做相乘),以观察相应的特性。这样,就相当于我们用不同的焦距去观察一个物体,可从宏观到微观,从概貌到细节观察得十分详尽。所以小波变换又被称为“数学显微镜”。某一个尺度(宽窄)下乘出来的结果,就可以理解成信号所包含的当前尺度对应频率成分有多少。于是,基函数会在某些尺度下,与信号相乘得到一个很大的值,因为此时二者有一种重合关系。那么我们就知道信号包含该频率的成分的多少。

仔细体会可以发现,这一步其实是在计算信号和三角函数的相关性。

在这里插入图片描述
在这里插入图片描述**
明白的来说:傅立叶变换就相当于: 你只能在远距离观察油画; 加窗傅立叶变换相当于: 你只能在固定的距离观察油画; 而小波变换相当于,你可以在任意的距离观察油画。**
在这里插入图片描述
小波公式:
在这里插入图片描述
在这里插入图片描述
注意:有些地方写某些公式CSDN写不出来,所以有的地方直接从Word里面以图片的方式复制过来了。【无奈】
小波变换(二)

  • 4
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值