智能计算系统 & 自然语言处理
文章平均质量分 87
智能计算系统是一种基于人工智能技术的计算机系统,它可以模拟人类的思维和决策过程,具有自主学习、自适应、自我优化和自我修复等能力。智能计算系统包括各种类型的机器学习算法、深度学习神经网络、自然语言处理、计算机视觉等技术,可以处理大规模的数据,提高数据分析和决策的准确性和效率,为各行业提供智能化的解决。
天使Di María
人工智能、深度学习、计算机视觉、NLP、BCI。有偿答疑/资料/代码:2301182699@qq.com
展开
-
香橙派KunpengPro基础评测
OrangePiKunpengPro开发板是香橙派联合华为精心打造的高性能开发板,其 搭载了鲲鹏处理器,可提供8TOPSINT8计算能力,提供了8GB和16GB两种内存 版本。Kunpeng Pro开发板结合了鲲鹏全栈根技术,全面使能高校计算机系统教学和原生开发。同时支持FPGA+ARM,从体系结构、数字逻辑设计、操作系统和编译,再到嵌入式开发,可以基于同一套体系结构和一套开发板实现贯穿打通。原创 2024-05-30 14:04:58 · 192 阅读 · 0 评论 -
自然语言处理 —— 03 统计语言模型
统计语言模型原创 2023-04-21 18:09:35 · 581 阅读 · 1 评论 -
自然语言处理 —— 02 基于规则的词法分析
词法分析(Lexical Analysis)是自然语言处理(NLP)中非常重要的一环。它是指将输入文本分割成单独的词语,并为每个单词确定其类型和意义。这是NLP处理流程的第一个步骤,也是其他更高级别的语言处理任务的基础。词法分析器会将文本分解成一个个单独的单词(tokens),并且将每个单词标记上对应的语法类型,例如名词、动词、形容词等等。此外,词法分析器还可以对单词进行词形还原、拼写检查、缩写扩展和同义词替换等处理。原创 2023-04-21 10:50:20 · 469 阅读 · 0 评论 -
自然语言处理 —— 01概述
NLP 教我们如何沟通,不论对内或对外,所产生的是可以分辨平庸与卓越的巨大差别。 NLP 并非仅仅是一个新的理论名词,它是非常实用而高效的科技。NLP 以一种你我都可 以运用来得到同样卓越成果的方式,去模仿有杰出表现者的思考和行动的方式。 NLP 既是个人成长的卓越艺术和科学的融合。NLP 之所以是一种艺术,是因为我们的想 法和做法都是与从不同的,而且任何的描述--特别是感觉、心态和信念有关的--也必然是个 有高度主观性的。原创 2023-04-20 21:43:50 · 387 阅读 · 1 评论 -
08 - 智能编程语言
Bang是一种基于Python语言的解释型编程语言。它的设计目标是提供一个易于学习和使用的高级编程语言,同时具有灵活性和可扩展性。Bang支持面向对象编程、函数式编程和元编程等多种编程范式,可以用于各种领域,包括Web开发、数据科学、人工智能等。该语言的语法简单,类似于Python,但是有一些特殊的语法糖和操作符,可以使得编写代码更加简洁和高效。同时,Bang还提供了一些内置函数和模块,方便开发人员进行常见的任务,如文件操作、字符串处理、网络通信等。Bang的代码可以在多个平台上运行,包括Win原创 2023-04-20 15:41:57 · 410 阅读 · 0 评论 -
07 - 深度学习处理器架构⭐⭐⭐⭐
DLP-S和DLP-M均是高性能处理器的系列产品,由台湾联发科技(MediaTek)推出。两者的主要区别在于核心数量和功耗等方面。DLP-S处理器主要面向高性能应用,包括高端手机、平板电脑、智能电视等产品。它采用了多核心架构,支持多发射队列和指令级并行,可以实现更高的性能和能效比。DLP-S处理器还采用了先进的制造工艺和全面的功耗管理技术,使得处理器在性能和功耗方面都具有优异的表现。DLP-M处理器则主要面向中端市场,包括入门级智能手机、物联网设备、智能家居等产品。相较于DLP-S,DLP-M处理器原创 2023-04-18 14:47:28 · 488 阅读 · 0 评论 -
06 - 深度学习处理器原理
深度学习处理器的重要性在于它们可以加速深度学习任务的执行,从而推动了人工智能的发展。传统的通用处理器虽然可以执行深度学习任务,但它们不够高效,需要消耗大量的能量和时间。深度学习处理器通过硬件加速和特定设计来优化深度学习任务的执行,从而可以提高执行效率、降低能耗和加速训练和推断过程。深度学习处理器的发展也推动了深度学习算法的创新,因为算法的发展需要硬件的支持和驱动。同时,深度学习处理器的出现也促进了更广泛的应用场景,包括自动驾驶、人脸识别、语音识别、图像识别等领域。因此,深度学习处理器的重要性不仅在于加速原创 2023-04-17 18:26:48 · 551 阅读 · 0 评论 -
05 - 编程框架机理
TensorFlow 中的算子,设计过程中已经针对底层硬件架构进行了充分的优化。针对生成的计算图,TensorFlow 又提供了一系列的优化操作,以提升计算图的运行效率。原创 2023-04-16 17:15:53 · 241 阅读 · 0 评论 -
04(序)—— Tensorflow程序运行案例
Tensorflow程序运行案例原创 2023-04-15 22:14:18 · 93 阅读 · 0 评论 -
04 - 编程框架使用
TensorFlow是一个流行的开源机器学习框架,由Google Brain团队开发。它被设计用于构建和训练深度神经网络,可用于各种任务,如图像识别、自然语言处理、语音识别和推荐系统等。TensorFlow具有良好的可扩展性,可以运行在多个CPU和GPU上,并支持分布式计算。它还提供了一个易于使用的API和工具,如TensorBoard,用于可视化模型训练的进度和结果。TensorFlow还支持多种编程语言,包括Python、C++和Java等,因此适用于不同的应用场景和开发者。由于其广泛的应用和强大的功能原创 2023-04-15 11:40:05 · 399 阅读 · 0 评论 -
03-深度学习
图像风格迁移是指将一张图像的风格(如梵高的星空)应用到另一张图像上,使其呈现出相似的艺术风格。这个概念最早由 Gatys 等人在 2015 年提出,他们使用深度学习中的卷积神经网络来实现图像风格迁移。具体地说,图像风格迁移的过程包括两个关键部分:内容表示和风格表示。内容表示是指提取出图像的内容信息,通常使用卷积神经网络中的中间层输出来表示。风格表示是指提取出图像的风格信息,通常使用一系列滤波器的统计信息来表示。然后,通过最小化输入图像与参考图像的内容表示之间的差异和输入图像与参考图像的风格表示之间的差异原创 2023-04-14 09:37:37 · 418 阅读 · 0 评论 -
02-神经网络基础
神经网络是一种基于计算机仿生学的人工智能算法,通过对大量数据的学习,能够自动地从输入数据中提取出特征和模式,并进行分类、回归、生成等任务。近年来,随着深度学习的发展和硬件技术的进步,神经网络在计算机视觉、自然语言处理、语音识别、推荐系统等领域取得了巨大的成功,并成为了人工智能领域中最受关注的研究方向之一。神经网络的重要性在于,它为我们提供了一种新的思考问题和解决问题的方式,同时也促进了人工智能技术的不断发展,为未来的智能化社会打下了坚实的基础。原创 2023-04-13 19:56:28 · 381 阅读 · 0 评论 -
01-智能计算系统概述
智能计算系统是一种基于人工智能技术的计算机系统,它可以模拟人类的思维和决策过程,具有自主学习、自适应、自我优化和自我修复等能力。智能计算系统包括各种类型的机器学习算法、深度学习神经网络、自然语言处理、计算机视觉等技术,可以处理大规模的数据,提高数据分析和决策的准确性和效率,为各行业提供智能化的解决方案。智能计算系统应用广泛,例如智能家居、智能交通、医疗健康、金融服务、安全监控等领域,正在逐步改变人们的生活和工作方式。原创 2023-04-13 13:19:12 · 820 阅读 · 0 评论