不难真的一点都不南
码龄4年
关注
提问 私信
  • 博客:25,786
    问答:100
    25,886
    总访问量
  • 15
    原创
  • 1,695,533
    排名
  • 2
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2020-10-07
博客简介:

m0_51358406的博客

查看详细资料
个人成就
  • 获得22次点赞
  • 内容获得11次评论
  • 获得89次收藏
  • 代码片获得443次分享
创作历程
  • 1篇
    2023年
  • 5篇
    2022年
  • 8篇
    2021年
  • 1篇
    2020年
成就勋章
TA的专栏
  • pytorch
    7篇
  • 安装相关
    2篇
  • Python基础
    4篇
  • DL基础
    3篇
  • 论文笔记
    1篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉深度学习tensorflowpytorch图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Windows使用腾讯云GPU跑深度学习

纯小白文章,不是最优解;将Windows这边电脑的休眠时间设置为。最近正好腾讯云GPU有活动,购买了GN10X实例,32G的V100,选择的环境是Pytorch。不同自己再重新安装CUDA、Pytorch了很划算~记住和。本文是使用WinSCP将数据集、预训练模型上传到云服务器,然后SSH连接远程控制...
原创
发布博客 2023.01.18 ·
1762 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

Pycharm 社区版plt不能正常显示图片

专业版好像可以通过setting→tools→python scientific →关闭 show plots in tool window来完成,但是我在社区版没有找到。在开头加下面两句代码就可以啦:import matplotlibmatplotlib.use('TkAgg')
原创
发布博客 2022.04.29 ·
4275 阅读 ·
10 点赞 ·
4 评论 ·
9 收藏

【Python】 初始化(二维)列表常见的错误

文中更多细节待补充~快速初始化一维列表快速初始化一维列表,一般使用data = [0]*n来创建具有n个0的列表——所有元素都指向同一个整数实例。初始化二维列表data = ([0]*c)*r : :([0]*c)确实创建了一张有c个0的列表,但是将此列表乘r,只会创建一张长度为r*c的一维列表。data = [[0]*c]*r :会得到一个二维列表,但是data列表的 r个元素都指向了同一个实例——一个含有c个0的列表。如果改变data[0][0]的值,很有可能同时改变data[2]
原创
发布博客 2022.04.14 ·
1218 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Python】生成器(generator)、yield含义

如有问题欢迎指出!参考链接:1.https://blog.csdn.net/mieleizhi0522/article/details/821428562.https://blog.csdn.net/mieleizhi0522/article/details/82142856)定义Python中生成器是迭代器(Iterator) 的一种,每次遇到 yield时函数会暂停并保存当前所有的运行信息,返回 yield 后的值, 并在下一次执行 next()方法时从当前位置继续运行。列表一次生成一组值,占
原创
发布博客 2022.01.29 ·
1319 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【CNN】卷积神经网络的计算量

如果有问题请指教!首先你要知道卷积神经网络的计算过程,这里不再赘述,下面的图分别来自邱锡鹏老师的书(https://nndl.github.io/)和李沐大神的直播课,最重要的是这句:每个输入通道有独立的二维卷积核,所有输入通道结果相加得到一个输出通道结果;每个输出通道有独立的三维卷积核。相关变量:输入(B,Cin,H,W)(B,C_{in},H,W)(B,Cin​,H,W)卷积核(Co,Cin,K,stride=S,padding=P)(C_o,C_{in},K,stride=S,paddin
原创
发布博客 2022.01.19 ·
1617 阅读 ·
2 点赞 ·
2 评论 ·
13 收藏

【Loss】Center loss代码详解(pytorch)

**注:**全部代码在最后,此代码不知来自哪位大神。m:batch size n:class size d:feat dimx=(x0x1...xm−1)=(x00x01...x0(d−1)x10x11...x1(d−1).............x(m−1)0x(m−1)1...x(m−1)(d−1))∈Rm×dx=\begin{pmatrix}x_0 \\ x_1\\ ...\\x_{m-1}\end{pmatrix}=\begin{pmatrix}x_{00}&x_{01}&am
原创
发布博客 2022.01.04 ·
2740 阅读 ·
4 点赞 ·
2 评论 ·
16 收藏

【论文笔记】TransReID: Transformer-based Object Re-Identification

TransReID论文地址:https://arxiv.org/abs/2102.04378代码:https://github.com/damo-cv/TransReID这篇笔记是按照自己本人的习惯写的(一些词语喜欢用英语表示);在看这篇论文之前,最好了解下ViT。感谢指教:)论文阅读Abstractone of the key challenges in ReID:Extracting robust feature representation.CNN:(缺点)一次只处理一个局部邻域,由于卷
原创
发布博客 2021.12.26 ·
2682 阅读 ·
3 点赞 ·
1 评论 ·
15 收藏

Batch Normalization

添加位置全连接层:添加在每一个全连接和激活函数之间;卷积神经:卷积计算之后、激活函数之前;计算公式对于一个拥有ddd维的输入xxx,我们将对它的每一个维度进行标准化处理。对于一个RGB图像,这里的ddd指的是channels=3 x=(x(1),x(2),x(3))x=(x^{(1)},x^{(2)},x^{(3)})x=(x(1),x(2),x(3))BN分别对每个channel进行Normalization。下标1,2,3…,m表示样本维度,上标(1),(2)…,(c )表示channe
原创
发布博客 2021.12.20 ·
357 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python神奇/灵活的赋值

最近在看李沐的动手学习深度学习https://zh-v2.d2l.ai/chapter_computer-vision/fcn.html再这样产生了疑惑。举例说明w1_tensor = w2_tensor = w3_tensor = torch.zeros((2, 2, 3, 3))a_tensor = torch.arange(9.0).reshape(3,3)w1_tensor[range(2),range(2), :, :] = a_tensor我以为输出的w1_tens..
原创
发布博客 2021.07.18 ·
155 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Pytorch】torch. zeros

继续(机器)翻译,如有错误,感谢指正:)https://pytorch.org/docs/stable/generated/torch.zeros.html#torch.zerostorch.zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)→Tensor返回一个值全为0的张量,其形状由size决定。参数:size (int...):一系列整数,定义了输
原创
发布博客 2021.06.30 ·
2068 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【Pytorch】torch.normal

继续(机器)翻译:)https://pytorch.org/docs/stable/generated/torch.normal.html?highlight=normal#torch.normaltorch.normal(mean, std, *, generator=None, out=None) → Tensor返回一个从独立的正态分布中抽取的随机数的张量,正态分布的平均值为mean、标准差为std。mean是一个张量,包含每个输出元素的正态分布的平均值。std是一个张量,包含每个
原创
发布博客 2021.06.30 ·
3356 阅读 ·
0 点赞 ·
1 评论 ·
14 收藏

【Pytorch】torch.nn.MSELoss

CLASS:torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html?highlight=mseloss#torch.nn.MSELoss测量y 和目标y 中每个元素之间的均方误差。(注:英文文档是x 和y ,为避免歧义我这用y 和y )如果reduction='none', (向量形式).
原创
发布博客 2021.06.29 ·
688 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

【Pytorch】torch.sum()的理解

根据李沐-动手学习深度学习课程第二章课后习题。
原创
发布博客 2021.06.24 ·
465 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

jupyter不能使用pytorch的解决方案

在pycharm中可以正常使用pytorch,在jupyter找不到pytorch没有关联Jupyter Notebook和conda的环境和包解决方法:conda install nb_conda
原创
发布博客 2021.06.22 ·
2271 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

Opencv 图像合成 逐步递增生成动画效果

这里 α按步长0.001递增。import cv2import numpy as npimport timeimg1=cv2.imread('stitch.jpg')img2=cv2.imread('pikachu.jpg')# 当进行图像融合时,被叠加的两张图片的大小、类型(高度/宽度/通道数)必须相同##获取两个的高度、宽度rows1, cols1 = img1.shape[:2]rows2, cols2 = img2.shape[:2]print(img1.shape[:2])#.
原创
发布博客 2020.10.17 ·
613 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多