python与数据可视化:使用matplotlib绘制折线图

本文介绍了如何使用matplotlib库在Python中绘制折线图,从基础步骤到优化技巧,包括改变坐标轴分度、解决中文乱码、调整图片大小,帮助读者掌握数据可视化的关键操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python与数据可视化:使用matplotlib绘制折线图

一、matplotlib简介

matplotlib是python的一个数据可视化工具,是一个功能强大的数学绘图库,它能帮助程序员绘制出折线图或散点图等图表。
访问以下链接https://matplotlib.org/stable/gallery/index.html
可以了解到更多功能并获取官方教程。

二、使用matplotlib绘制折线图

应用场景:

我国2020年第一季度至2021年第一季度的国内生产总值统计表
以上为我国2020年第一季度至2021年第一季度的国内生产总值统计表。将表中数据按照时间为横轴(单位:季度)、GDP为纵轴(单位:亿元)绘制成折线图。
数据来自国家统计局官网,点击以下链接可查看原网页:
https://data.stats.gov.cn/easyquery.htm?cn=B01

(一)基础步骤:描点、连线、画图

在中学的数学课上,老师就讲过,描绘函数图像的核心步骤只有三步:描点、连线和画图,在这里也是一样。

# 导入matplotlib下的pyplot包
from matplotlib import pyplot as plt
# 描述横坐标
x = range(1, 6)
# 描述横坐标对应的纵坐标
y = [205727, 248985.1, 264976.3, 296297.8, 249310.1]
# 将坐标信息传入绘制图像的函数
plt.plot(x, y)
# 显示图像
plt.show()

运行结果:
在这里插入图片描述

(二)优化1:改变坐标轴的分度值,改变刻度标签,增加图片标题和坐标轴的物理意义

但是,我们注意到,这幅图横纵坐标的物理意义并不明确,缺少必要的说明。同时坐标轴的分度值(0.5)不合适。(“半个季度”可能会让人产生疑惑)所以我们有必要对图像作出优化。

# 导入matplotlib下的pyplot包
from matplotlib import pyplot as plt

# 基础步骤
# 描述横坐标
x = range(1, 6)
# 描述横坐标对应的纵坐标
y 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值