Group Low-Rank Nonnegative Matrix Factorization With Semantic Regularizer for Hyperspectral Unmixing

该研究提出了一种新的线性高光谱解混方法——群低秩非负矩阵分解(GLrNMF),结合高光谱数据的低秩先验和语义信息,提高了端元和丰度恢复的准确性。针对现有NMF模型的不足,如缺乏结构和语义稀疏先验,以及光谱与空间信息结合的局限,GLrNMF通过超像素划分和低秩约束,探索空间-光谱语义,实现了更精确的解混效果。
摘要由CSDN通过智能技术生成

M. Wang, B. Zhang, X. Pan and S. Yang, "Group Low-Rank Nonnegative Matrix Factorization With Semantic Regularizer for Hyperspectral Unmixing," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 4, pp. 1022-1029, April 2018, doi: 10.1109/JSTARS.2018.2805779.

摘要:

本文利用高光谱数据丰度的低秩先验,结合语义信息,提出了一种新的线性高光谱解混群低秩约束非负矩阵分解(GLrNMF)方法。首先,将高光谱图像像素划分为若干组超像素,然后对其施加低秩约束,探索空间域和光谱域的语义几何。通过将语义信息加入到NMF中,我们可以在线性解混合模型中恢复更精确的端元和丰度。

现有NMF模型缺点:

  1. 缺乏结构和语义稀疏先验:现有的大多数方法只在光谱测量上铸造一些先验。然而,随着数据空间分辨率的提高,高光谱图像不仅能提供高维光谱测量,还能揭示各种材料光谱的空间组织,从而表现出可供进一步探索的语义结构。
  2. 光谱与粗糙空间信息的笨拙结合:为了利用高分辨率高光谱数据的空间相关性,人们发展了几种空间光谱解混方法。然而,它们大多通过制定附加的齐次空间正则化子[25]将粗空间信息纳入解混中。一方面,这种同质空间假设过于粗糙,无法成立。另一方面,正则化参数对解混效果影响较大,在实际应用中难以确定。

本文方法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值