从泊松方程开始的逆问题求解

泊松方程

泊松方程(Poisson’s Equation)描述的是某个物理量 u ( r ) u(r) u(r)在空间中的分布,其数学表达式为:

∇ 2 u ( r ) = f ( r ) \nabla^2 u(\mathbf{r}) = f(\mathbf{r}) 2u(r)=f(r)

核心思想是:某个量 u ( r ) u(r) u(r)在某个区域的分布,是由该区域内部的源项 f ( r ) f(r) f(r)所决定的

其中:

  • ∇ 2 \nabla^2 2 是拉普拉斯算子,表示对函数 u ( r ) u(\mathbf{r}) u(r) 进行二阶空间导数:

∇ 2 u = ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 \nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} 2u=x22u+y22u+z22u

在二维情况下:

∇ 2 u = ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 \nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} 2u=x22u+y22u

  • u ( r ) u(\mathbf{r}) u(r) 是未知的标量场函数,通常表示物理量,如电势、温度、流体压力等。
  • f ( r ) f(\mathbf{r}) f(r) 是已知的源项函数,例如电荷密度、热源等。

举个栗子:静电场中的泊松方程
在静电学中,电势 φ ( r ) \varphi(\mathbf{r}) φ(r) 满足:
∇ 2 φ ( r ) = − ρ ( r ) ϵ 0 \nabla^2 \varphi(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{\epsilon_0} 2φ(r)=ϵ0ρ(r)

  • φ ( r ) \varphi(\mathbf{r}) φ(r):某个位置的电势

  • ρ ( r ) \rho(\mathbf{r}) ρ(r):该位置的电荷密度

  • ϵ 0 \epsilon_0 ϵ0:真空介电常数

如果一个区域内有电荷 ,那么它周围的电势分布就遵循泊松方程。
特殊情况:如果该区域内没有电荷( ρ = 0 \rho = 0 ρ=0,那么电势满足拉普拉斯方程:
∇ 2 φ = 0 \nabla^2 \varphi = 0 2φ=0


泊松方程的特殊情况

  • f ( r ) = 0 f(\mathbf{r}) = 0 f(r)=0 时,泊松方程退化为拉普拉斯方程:

∇ 2 u = 0 \nabla^2 u = 0 2u=0

  • 该方程描述无源稳态场,如静电势、电荷分布外部的电场、均匀介质中的温度分布等。

泊松方程的解法

泊松方程的求解依赖于边界条件 ,常见的方法有:

  1. 分离变量法 (适用于规则几何形状)

  2. 傅里叶变换 (适用于无界或周期性问题)

  3. 格林函数法 (用于构造积分解)

  4. 有限差分/有限元法 (数值计算)

例如,在整个空间中,三维泊松方程的解可以通过格林函数 表示为:
u ( r ) = ∫ V G ( r , r ′ ) f ( r ′ ) d 3 r ′ u(\mathbf{r}) = \int_V G(\mathbf{r}, \mathbf{r}') f(\mathbf{r}') d^3 r' u(r)=VG(r,r)f(r)d3r

其中 G ( r , r ′ ) G(\mathbf{r}, \mathbf{r}') G(r,r) 是泊松方程对应的格林函数。

第一类边界条件的三维泊松方程问题

其中第一类边界条件指的是给定边界上函数值(Dirichlet 边界条件)。

大致内容如下:

问题的数学表达

  • 给定三维区域 V V V,要求解泊松方程:
    ∇ 2 u ( r ) = f ( r ) , r ∈ V \nabla^2 u(\mathbf{r}) = f(\mathbf{r}), \quad \mathbf{r} \in V 2u(r)=f(r),rV
    ​ 在边界 Σ = ∂ V \Sigma = \partial V Σ=V 上满足 Dirichlet 条件:
    u ( r ) ∣ Σ = φ ( r ) u(\mathbf{r}) |_{\Sigma} = \varphi(\mathbf{r}) u(r)Σ=φ(r)

δ-函数的挑选作用

(1) 一维情况

在一维情况下,我们有:

∫ − ∞ ∞ δ ( x − x ′ ) f ( x ′ ) d x ′ = f ( x ) . \int_{-\infty}^{\infty} \delta(x - x') f(x') dx' = f(x). δ(xx)f(x)dx=f(x).

这里的积分变量是 x ′ x' x,所以体积分元就是 单个变量的微分 d x ′ dx' dx
(2) 二维情况
在二维情况下,坐标是 r ′ = ( x ′ , y ′ ) \mathbf{r'} = (x', y') r=(x,y),所以积分形式是:
∫ V δ ( r − r ′ ) f ( r ′ ) d 2 r ′ = f ( r ) , \int_{V} \delta(\mathbf{r} - \mathbf{r'}) f(\mathbf{r'}) d^2r' = f(\mathbf{r}), Vδ(rr)f(r)d2r=f(r),

其中 d 2 r ′ = d x ′ d y ′ d^2r' = dx' dy' d2r=dxdy
(3) 三维情况
在三维空间中,我们有坐标 r ′ = ( x ′ , y ′ , z ′ ) \mathbf{r'} = (x', y', z') r=(x,y,z),所以积分的体积元就是:
d 3 r ′ = d x ′ d y ′ d z ′ . d^3r' = dx' dy' dz'. d3r=dxdydz.

这样,我们就得到了 三维积分的写法
∫ V δ ( r − r ′ ) f ( r ′ ) d 3 r ′ = f ( r ) . \int_{V} \delta(\mathbf{r} - \mathbf{r'}) f(\mathbf{r'}) d^3r' = f(\mathbf{r}). Vδ(rr)f(r)d3r=f(r).

  • 利用 δ-函数 δ ( r ′ − r ) \delta(\mathbf{r}' - \mathbf{r}) δ(rr) 将解 u ( r ) u(\mathbf{r}) u(r) 以积分的形式表示:
    u ( r ) = ∫ V δ ( r ′ − r ) u ( r ′ ) d 3 r ′ u(\mathbf{r}) = \int_V \delta(\mathbf{r}' - \mathbf{r}) u(\mathbf{r}') d^3 r' u(r)=Vδ(rr)u(r)d3r

格林函数:

格林函数描述点源在整个空间的影响!!!

由于格林函数 G ( r ′ − r ) G(\mathbf{r}' - \mathbf{r}) G(rr) 满足:
∇ 2 G ( r ′ − r ) = δ ( r ′ − r ) \nabla^2 G(\mathbf{r}' - \mathbf{r}) = \delta(\mathbf{r}' - \mathbf{r}) 2G(rr)=δ(rr)

所以可以用它代替 δ-函数。

想象一下在静水池里丢了一块石头,石头的冲击就像 δ 函数一样,它是一个局部的、瞬间的影响。这个点源在空间中会“传播”影响

函数 G(r′−r)被称为格林函数,它就表示点源在空间中的影响

这就类似于在普通代数中,逆矩阵 A − 1 A^{-1} A1 乘以矩阵 A 会得到单位矩阵,在微分算子下,格林函数可以被视为“拉普拉斯算子的逆”

  1. 求解过程

    代入泊松方程

∫ V G ( r ′ − r ) ∇ 2 u ( r ′ ) d 3 r ′ = ∫ V G ( r ′ − r ) f ( r ′ ) d 3 r ′ \int_V G(\mathbf{r}' - \mathbf{r}) \nabla^2 u(\mathbf{r}') d^3 r' = \int_V G(\mathbf{r}' - \mathbf{r}) f(\mathbf{r}') d^3 r' VG(rr)2u(r)d3r=VG(rr)f(r)d3r

这样,解 u ( r ) u(\mathbf{r}) u(r) 就可以通过积分的形式表示出来。格林函数 G G G 作为核函数,将原来的微分方程转换为积分方程的形式,最终用于求解 u ( r ) u(\mathbf{r}) u(r)

核函数意思就是,在将微分方程转化为积分方程时起到了类似核的作用。格林函数作为卷积核,参与了将源项(例如在物理问题中的外部力或源分布)与解决问题的函数(如电场、位势等)结合起来的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

银河真理之星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值