泊松方程
泊松方程(Poisson’s Equation)描述的是某个物理量 u ( r ) u(r) u(r)在空间中的分布,其数学表达式为:
∇ 2 u ( r ) = f ( r ) \nabla^2 u(\mathbf{r}) = f(\mathbf{r}) ∇2u(r)=f(r)
核心思想是:某个量 u ( r ) u(r) u(r)在某个区域的分布,是由该区域内部的源项 f ( r ) f(r) f(r)所决定的。
其中:
- ∇ 2 \nabla^2 ∇2 是拉普拉斯算子,表示对函数 u ( r ) u(\mathbf{r}) u(r) 进行二阶空间导数:
∇ 2 u = ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 \nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} ∇2u=∂x2∂2u+∂y2∂2u+∂z2∂2u
在二维情况下:
∇ 2 u = ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 \nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} ∇2u=∂x2∂2u+∂y2∂2u
- u ( r ) u(\mathbf{r}) u(r) 是未知的标量场函数,通常表示物理量,如电势、温度、流体压力等。
- f ( r ) f(\mathbf{r}) f(r) 是已知的源项函数,例如电荷密度、热源等。
举个栗子:静电场中的泊松方程
在静电学中,电势
φ
(
r
)
\varphi(\mathbf{r})
φ(r) 满足:
∇
2
φ
(
r
)
=
−
ρ
(
r
)
ϵ
0
\nabla^2 \varphi(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{\epsilon_0}
∇2φ(r)=−ϵ0ρ(r)
-
φ ( r ) \varphi(\mathbf{r}) φ(r):某个位置的电势
-
ρ ( r ) \rho(\mathbf{r}) ρ(r):该位置的电荷密度
-
ϵ 0 \epsilon_0 ϵ0:真空介电常数
如果一个区域内有电荷 ,那么它周围的电势分布就遵循泊松方程。
特殊情况:如果该区域内没有电荷(
ρ
=
0
\rho = 0
ρ=0),那么电势满足拉普拉斯方程:
∇
2
φ
=
0
\nabla^2 \varphi = 0
∇2φ=0
泊松方程的特殊情况
- 当 f ( r ) = 0 f(\mathbf{r}) = 0 f(r)=0 时,泊松方程退化为拉普拉斯方程:
∇ 2 u = 0 \nabla^2 u = 0 ∇2u=0
- 该方程描述无源稳态场,如静电势、电荷分布外部的电场、均匀介质中的温度分布等。
泊松方程的解法
泊松方程的求解依赖于边界条件 ,常见的方法有:
-
分离变量法 (适用于规则几何形状)
-
傅里叶变换 (适用于无界或周期性问题)
-
格林函数法 (用于构造积分解)
-
有限差分/有限元法 (数值计算)
例如,在整个空间中,三维泊松方程的解可以通过格林函数 表示为:
u
(
r
)
=
∫
V
G
(
r
,
r
′
)
f
(
r
′
)
d
3
r
′
u(\mathbf{r}) = \int_V G(\mathbf{r}, \mathbf{r}') f(\mathbf{r}') d^3 r'
u(r)=∫VG(r,r′)f(r′)d3r′
其中 G ( r , r ′ ) G(\mathbf{r}, \mathbf{r}') G(r,r′) 是泊松方程对应的格林函数。
第一类边界条件的三维泊松方程问题
其中第一类边界条件指的是给定边界上函数值(Dirichlet 边界条件)。
大致内容如下:
问题的数学表达
- 给定三维区域
V
V
V,要求解泊松方程:
∇ 2 u ( r ) = f ( r ) , r ∈ V \nabla^2 u(\mathbf{r}) = f(\mathbf{r}), \quad \mathbf{r} \in V ∇2u(r)=f(r),r∈V
在边界 Σ = ∂ V \Sigma = \partial V Σ=∂V 上满足 Dirichlet 条件:
u ( r ) ∣ Σ = φ ( r ) u(\mathbf{r}) |_{\Sigma} = \varphi(\mathbf{r}) u(r)∣Σ=φ(r)
δ-函数的挑选作用
(1) 一维情况
在一维情况下,我们有:
∫ − ∞ ∞ δ ( x − x ′ ) f ( x ′ ) d x ′ = f ( x ) . \int_{-\infty}^{\infty} \delta(x - x') f(x') dx' = f(x). ∫−∞∞δ(x−x′)f(x′)dx′=f(x).
这里的积分变量是 x ′ x' x′,所以体积分元就是 单个变量的微分 d x ′ dx' dx′。
(2) 二维情况
在二维情况下,坐标是 r ′ = ( x ′ , y ′ ) \mathbf{r'} = (x', y') r′=(x′,y′),所以积分形式是:
∫ V δ ( r − r ′ ) f ( r ′ ) d 2 r ′ = f ( r ) , \int_{V} \delta(\mathbf{r} - \mathbf{r'}) f(\mathbf{r'}) d^2r' = f(\mathbf{r}), ∫Vδ(r−r′)f(r′)d2r′=f(r),其中 d 2 r ′ = d x ′ d y ′ d^2r' = dx' dy' d2r′=dx′dy′。
(3) 三维情况
在三维空间中,我们有坐标 r ′ = ( x ′ , y ′ , z ′ ) \mathbf{r'} = (x', y', z') r′=(x′,y′,z′),所以积分的体积元就是:
d 3 r ′ = d x ′ d y ′ d z ′ . d^3r' = dx' dy' dz'. d3r′=dx′dy′dz′.这样,我们就得到了 三维积分的写法 :
∫ V δ ( r − r ′ ) f ( r ′ ) d 3 r ′ = f ( r ) . \int_{V} \delta(\mathbf{r} - \mathbf{r'}) f(\mathbf{r'}) d^3r' = f(\mathbf{r}). ∫Vδ(r−r′)f(r′)d3r′=f(r).
- 利用 δ-函数
δ
(
r
′
−
r
)
\delta(\mathbf{r}' - \mathbf{r})
δ(r′−r) 将解
u
(
r
)
u(\mathbf{r})
u(r) 以积分的形式表示:
u ( r ) = ∫ V δ ( r ′ − r ) u ( r ′ ) d 3 r ′ u(\mathbf{r}) = \int_V \delta(\mathbf{r}' - \mathbf{r}) u(\mathbf{r}') d^3 r' u(r)=∫Vδ(r′−r)u(r′)d3r′
格林函数:
格林函数描述点源在整个空间的影响!!!
由于格林函数
G
(
r
′
−
r
)
G(\mathbf{r}' - \mathbf{r})
G(r′−r) 满足:
∇
2
G
(
r
′
−
r
)
=
δ
(
r
′
−
r
)
\nabla^2 G(\mathbf{r}' - \mathbf{r}) = \delta(\mathbf{r}' - \mathbf{r})
∇2G(r′−r)=δ(r′−r)
所以可以用它代替 δ-函数。
想象一下在静水池里丢了一块石头,石头的冲击就像 δ 函数一样,它是一个局部的、瞬间的影响。这个点源在空间中会“传播”影响
函数 G(r′−r)被称为格林函数,它就表示点源在空间中的影响。
这就类似于在普通代数中,逆矩阵 A − 1 A^{-1} A−1 乘以矩阵 A 会得到单位矩阵,在微分算子下,格林函数可以被视为“拉普拉斯算子的逆”。
-
求解过程
代入泊松方程
∫ V G ( r ′ − r ) ∇ 2 u ( r ′ ) d 3 r ′ = ∫ V G ( r ′ − r ) f ( r ′ ) d 3 r ′ \int_V G(\mathbf{r}' - \mathbf{r}) \nabla^2 u(\mathbf{r}') d^3 r' = \int_V G(\mathbf{r}' - \mathbf{r}) f(\mathbf{r}') d^3 r' ∫VG(r′−r)∇2u(r′)d3r′=∫VG(r′−r)f(r′)d3r′
这样,解 u ( r ) u(\mathbf{r}) u(r) 就可以通过积分的形式表示出来。格林函数 G G G 作为核函数,将原来的微分方程转换为积分方程的形式,最终用于求解 u ( r ) u(\mathbf{r}) u(r)。
核函数意思就是,在将微分方程转化为积分方程时起到了类似核的作用。格林函数作为卷积核,参与了将源项(例如在物理问题中的外部力或源分布)与解决问题的函数(如电场、位势等)结合起来的过程。