网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
- 代码演示:
中序遍历的代码和前序遍历一样,看起来都非常简洁:
// 中序遍历 左 根 右 void InOrder(BT* root) { if (root == NULL) { printf("NULL "); // 如果为空,就打印 return; // 当前函数结束 } InOrder(root->left); printf("%d ", root->data); InOrder(root->right); }
- 效果如下:
单纯看代码看不出啥头绪,还得是画递归图。
💦后续遍历
- 遍历规则:
后续遍历,也叫后根遍历
**遍历顺序:**左子树 -> 右子树 -> 根结点
- 思路:
要访问1得先访问1的左子树2,继而得先访问2的左子树3,再先访问3的左子树NULL,右子树NULL,根3,递归返回访问2的右子树NULL,根2,再递归返回访问1的右子树……类似的
- 画图演示:
- 代码演示:
// 后序 左 右 根 void PosOrder(BT* root) { if (root == NULL) { printf("NULL "); // 如果为空,就打印 return; // 当前函数结束 } PosOrder(root->left); PosOrder(root->right); printf("%d ", root->data); }
- 效果如下:
- 画图演示递归过程:
🍌二叉树的经典问题(重点)
💦二叉树节点个数
- 思想:
求结点个数,这里我将提供如下几种方法,但不都是可行的,要对比着看,本质都是递归的思想:
- 法一:遍历
在前文中,我们已经学习了如何遍历链式二叉树,现在想求结点的个数,那么只需要随便采用一种遍历方式,并把打印换成计数++来求个数即可,听起来非常容易,先看代码:
//节点个数 void BTreeSize(BTNode* root) { int count = 0; //局部变量 if (root == NULL) //如果为空 return; ++count; BTreeSize(root->left); BTreeSize(root->right); }
难道上述代码能够准确求出结点个数吗?其实不然,根本求不出来。
具体解释起来需要借用栈帧的思想,因为这里用的是递归,而递归是每递归一次在栈帧里头都会开辟一块空间,每一块栈帧都会有一个count,而我希望的是只需要有一个count,然后所有的count均加在一起,可是现在每递归一次,重新开辟一个count,count即局部变量。递归完就销毁,同形参的改变不会影响实参一样,一个道理。所有此法根本就行不通,得换。
- 法二:定义局部静态变量count
在法一中,我们定义的是局部变量count,会导致每递归一次就开辟栈帧,并创建count,每次递归结束返回就销毁栈帧。那如果可以把count放在静态区里头,不久可以保留住count吗
//节点个数 int BTreeSize(BTNode* root) { static int count = 0; //局部静态变量 if (root == NULL) //如果为空 return count; ++count; BTreeSize(root->left); BTreeSize(root->right); return count; }
- 效果如下:
看似好像是成功了,确实结点个数为6,但真的就是成功了吗?当然不是,如果我们现在想多打印几次呢?
什么鬼?怎么size还呈现等差数列递增呢?就是因为这里运用了static关键字,将count扣在静态区,导致多次调用没办法初始化为0,使其每次递归调用累计加加,但是当你再重新调用自己时,count不会重新置为0,会依旧保留为曾经++的结果。局部的静态变量有一个好处,它的生命周期在全局,但是只能在局部去访问。它的初始化为0只有第一次调用会访问,其余均不会。由此可见,局部的静态也是不行的,还得再优化。
- 法三:定义全局变量count
法二的局部静态变量行不通,那就把count设定为全局变量。要知道全局变量是存在静态区的。虽然也在静态区,但是其初始化为0是可以重复访问的。
//节点个数 int count = 0; void BTreeSize(BTNode* root) { if (root == NULL) //如果为空 return; ++count; BTreeSize(root->left); BTreeSize(root->right); }
- 效果如下:
确实可以求出结点个数,并且也不会出现像法二一样的问题。但是其实定义全局变量也会存在一个小问题:线程安全的问题,这个等以后学到Linux再来讨论,我们这边考虑再换一种更优解。
- 法四:最优解
我们这里可以考虑多套一层,可以考虑把变量的地址传过去。这样操作不会存在任何问题,上代码:
//节点个数 void BTreeSize(BTNode* root, int* pCount) { if (root == NULL) //如果为空 return; ++(*pCount); BTreeSize(root->left, pCount); BTreeSize(root->right, pCount); }
确实可以求出结点个数,并且也不会出现像法二一样的问题。但是其实定义全局变量也会存在一个小问题:线程安全的问题,这个等以后学到Linux再来讨论,我们这边考虑再换一种更优解。
- 法五:新思路
直接利用子问题的思想来写,返回当root为空为0,不是就递归左树+右树+1。
- 空树,最小规模子问题,结点个数返回0
- 非空,左子树结点个数+右子树结点个数 + 1(自己)
int BTreeSize(BTNode* root) { return root == NULL ? 0 : BTreeSize(root->left) + BTreeSize(root->right) + 1; }
此法非常巧妙,很灵活的运用了递归的思想,我们通过递归图来深刻理解下:
💦二叉树叶子节点的个数
- 思路1:遍历+计数
在遍历的基础上如果结点的左右子树均为空则count++。但是此题我们依旧采用分治思想。
// 计算叶子节点个数 // 遍历 + 计数 void TreeLeveSize1(BT* root, int* count) { if(root==NULL) { return ; } if(root->left==NULL&&root->right==NULL) { (*count)++; } TreeLeveSize1(root->left,count); TreeLeveSize1(root->right,count); }
- 思路2:遍历+递归
// 叶子节点个数 int TreeLeveSize2(BT*root) { if(root==NULL) { return 0; } int left = TreeLeveSize2(root->left); int right = TreeLeveSize2(root->right); if(left==0&&right==0) { return 1; } return left+right; }
- 思路3:分治思想
首先,如果为空,直接返回0,如若结点的左子树和右子树均为空,则为叶节点,此时返回1,其它的继续分治递归。
- 代码演示:
/ 计算叶子节点个数 int TreeLeveSize(BT* root) { if(root==NULL) { return 0; } if(root->left==NULL&&root->right==NULL) { return 1; } return TreeLeveSize(root->left)+TreeLeveSize(root->right); }
- 递归图:
💦二叉树第K层节点个数
- 思路:
假设K=3
- 空树,返回0
- 非空,且K == 1,返回1
- 非空,且K>1,转换成左子树K-1层节点个数 + 右子树K-1层节点个数
- 代码演示:
// 树的第K层节点个数 // 1. 当前树的第K层 = 左子树的第K-1层 + 右子树的第K-1层 int TreeKSize(BT* root, int k) { assert(k > 0); // 给出 所问 问题 能成成立的条件(所问,问题的的结束条件) if (root == NULL) { return 0; } if (k == 1) { return 1; } return TreeKSize(root->left, k - 1) + TreeKSize(root->right, k - 1); }
- 递归图:
💦二叉树的深度
- 思路:
此题同样是运用分治的思想来解决,要比较左子树的高度和右子树的高度,大的那个就+1,因为还有根结点也算1个高度。
- 代码演示:
// 树的深度 int TreeDeep(BT* root) { if(root==NULL) { return 0; } int left = TreeDeep(root->left); int right = TreeDeep(root->right); if(left>right) { return left+1; } else { return right+1; } }
- 递归图:
💦二叉树查找值为x的节点
- 思路:
还是利用分治的思想,将其递归化成子问题去解决
- 先去根结点寻找,是就返回此节点
- 此时去左子树查找有无节点x
- 最后再去右子数去查找有无节点x
- 若左右子树均找不到节点x,直接返回空
- 代码演示:
// 查询 树中的某一个节点是否存在 BT* TreeNode(BT* root,TreeDatatype x) { if(root==NULL) { return NULL; } if(root->data==x) { return root; } BT* left = TreeNode(root->left,x); BT* right = TreeNode(root->right,x); if(left!=NULL) { return left; } if(right!=NULL) { return right; } return NULL; }
- 递归图:
假设我们寻找的是数字5
💦二叉树的销毁
- 思路:
销毁的思想和遍历类似,如若我挨个遍历的同时,没遍历一次就销毁一次,岂不能达到效果,但是又会存在一个问题,那就是你要采用什么样的遍历方式?倘若你采用前序遍历,刚开始就把根销毁了,那么后面的子树还怎么销毁呢?因为此时根没了,子树找不到了就,所以要采用倒着销毁的规则,也就是后续的思想
- 代码演示:
// 二叉树的销毁 // 从后往前销毁-------后续思想 // 进行遍历然后在销毁 void DestoryTree(BT*root) { if(root==NULL) { return; } DestoryTree(root->left); DestoryTree(root->right); free(root); }
思想和后续遍历类似,不做递归图演示。
🍊总代码和演示图
💦代码
#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <assert.h> typedef int TreeDatatype; typedef struct BinaryTree { struct BinaryTree* left; struct BinaryTree* right; TreeDatatype data; }BT; BT* BuyTreenode(TreeDatatype x) { BT* tree = (BT*)malloc(sizeof(BT)); if(tree==NULL) { perror(" fail"); exit(-1); } tree->data = x; tree->left = tree->right = NULL; return tree; } BT* CreatTree() { BT* node1 = BuyTreenode(1); BT* node2 = BuyTreenode(2); BT* node3 = BuyTreenode(3); BT* node4 = BuyTreenode(4); BT* node5 = BuyTreenode(5); BT* node6 = BuyTreenode(6); //BT* node7 = BuyTreenode(7); node1->left = node2; node1->right = node4; node2->left = node3; //node2->right = node7; node4->left = node5; node4->right = node6; return node1; } // 前序遍历:根 左 右 void PreOrder(BT* root) { if(root==NULL) { printf("NULL "); return; } printf("%d ",root->data); PreOrder(root->left); PreOrder(root->right); } // 中序遍历 void InOrder(BT*root) { if(root==NULL) { printf("NULL"); return; } InOrder(root->left); printf("%d ",root->data); InOrder(root->right); } // 后序遍历 void PastOrder(BT* root) { if(root==NULL) { printf("NULL"); return; } PastOrder(root->left); PastOrder(root->right); printf("%d ",root->data); } // 计算一颗树的节点个数 int TreeSize(BT* root) { if(root==NULL) { return 0; } return TreeSize(root->left)+TreeSize(root->right)+1; } // 计算叶子节点个数 int TreeLeveSize(BT* root) { if(root==NULL) { return 0; } if(root->left==NULL&&root->right==NULL) { return 1; } return TreeLeveSize(root->left)+TreeLeveSize(root->right); } // 计算叶子节点个数 // 遍历 + 计数 void TreeLeveSize1(BT* root, int* count) { if(root==NULL) { return ; } if(root->left==NULL&&root->right==NULL) { (*count)++; } TreeLeveSize1(root->left,count); TreeLeveSize1(root->right,count); } // 叶子节点个数 int TreeLeveSize2(BT*root) { if(root==NULL) { return 0; } int left = TreeLeveSize2(root->left); int right = TreeLeveSize2(root->right); if(left==0&&right==0) { return 1; } return left+right; } // 树的第 K 层的节点 int TreeKLeveSize(BT* root,int k) { if(root==NULL) { return 0; } if(k==1) { return 1; } return TreeKLeveSize(root->left,k-1)+TreeKLeveSize(root->right,k-1); } // 树的深度 int TreeDeep(BT* root) { if(root==NULL) { return 0;
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
{ return 1; } return left+right;
}
// 树的第 K 层的节点
int TreeKLeveSize(BT* root,int k)
{
if(rootNULL)
{
return 0;
}
if(k1)
{
return 1;
}
return TreeKLeveSize(root->left,k-1)+TreeKLeveSize(root->right,k-1);
}// 树的深度
int TreeDeep(BT* root)
{
if(root==NULL)
{
return 0;
[外链图片转存中…(img-zGfesxUr-1715789853712)]
[外链图片转存中…(img-uunZoqzM-1715789853713)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!