466C. Number of Ways

该博客讨论了一道编程题目,要求给定一个整数数组,找出所有将其分成连续三段且每段和相等的方法数。题目限制了数组长度及元素范围,并提供了一个C++解决方案,该方案首先检查总和是否能被3整除,然后通过前缀和计算不同分割点的数量。
摘要由CSDN通过智能技术生成

链接:

https://codeforces.com/problemset/problem/466/C

题意

给你一个长度为n的数组,问有几种方式可以把数组分成连续的三个部分,且每个部分内的和相等。
1 ≤ n ≤ 5e5
|a[i]| ≤  109

Example

input
5
1 2 3 0 3
output
2
input
4
0 1 -1 0
output
1
2
4 1
0

解析

这题将数组分成总和相等的三部分,那每部分的和就是数组总和的1/3,所以先判断数组和是否为三的倍数,如果是,将数组进行前缀和处理,然后将其分成三个部分,第一部分就是值为1/3,第二部分就是值为2/3,剩下的就是第三部分,其实多少中方法就是取决于有第一部分和第二部分有多少种,例如:在这里插入图片描述

#include <iostream>
 
using namespace std;
 
typedef long long ll;
 
const int N = 5e5 + 10;
 
int n;
ll a[N], s[N], sum;
 
int main()
{
	cin >> n;
	for (int i = 1; i <= n; i++)
	{
		cin >> a[i];
		sum += a[i];
	}
 
	//处理前缀和
	for (int i = 1; i <= n; i++) s[i] = s[i - 1] + a[i];
 
	if (sum % 3 != 0 || n < 3) cout << 0;
	else
	{
		sum /= 3;
		ll point1_num = sum;
		ll point2_num = sum * 2;
		ll point1 = 0, point2 = 0;
		for (int i = 1; i < n; i++)//没有到最后一个,最后一个是sum*3
		{
			if (s[i] == point2_num) point2 += point1;
			
			if (s[i] == point1_num) point1++;
		}
 
		cout << point2;
	}
 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值