自用模板

头文件

#include<bits/stdc++.h>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstring>
#include<deque>
#include<functional>//sort降序greater<int>() 升序less<int>() 需要
#include<iostream>
#include<list>
#include<iomanip>//cout输出格式控制
#include<map>
#include<queue>
#include<set>
#include<sstream>
#include<stack>
#include<stdlib.h>
#include<string>
#include<utility>
#include<vector>
const double pi = acos(-1.0);
typedef long long ll;

程序判定结果

  • Compiling:代码正在后台编译
  • Restricted Function:代码中使用了不安全的函数
  • Compilation Error:代码编译错误
  • Running:程序运行中
  • Time Limit Exceeded:超时
  • Memory Limit Exceeded:内存超限
  • Runtime Error:SIGFPE:程序运行时错误:浮点数异常
  • Runtime Error:SIGSEGV:程序运行时错误:段错误
  • Presentation Error:格式错误
  • Accepted:程序正确
  • Wrong Answer:程序不正确

输入读取文件

freopen("C:\\Users\\Ww\\Desktop\\1.txt","r",stdin);

关闭同步/解除绑定

std::ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);

( a % c = d , b % c = d )→(a - b) % c =0

证明:
我们现在有两个数 a,b 同余 ( a % c = d , b % c = d )
那么 a = xc + d,b = yc + d
那么 a - b = (x - y)c
可证得 (a - b) % c =0

裴蜀定理

若a,b是整数,且gcd(a,b)=d
对于任意整数x,y,ax+by=md
特别地,一定存在整数x,y,使ax+by=d成立(即m=1)
重要推论:a,b互质的充分必要条件是存在整数x,y使ax+by=1

扩展欧几里得定理(Extended Euclidean algorithm, EXGCD)

递归法

//常用于求x,y使得gcd(a, b) = a * x + b * y;
int exgcd(int a, int b, int &x, int &y)
{
  if (!b)
  {
    x = 1;
    y = 0;
    return a;
  }
  int d = exgcd(b, a % b, x, y);
  int t = x;
  x = y;
  y = t - (a / b) * y;
  return d;
}

迭代法

// C++11 新特性
//代码运行速度将比递归代码快一点。
int exgcd(int a, int b, int& x, int& y)
{
    x = 1, y = 0;
    int x1 = 0, y1 = 1, a1 = a, b1 = b;
    while (b1)
    {
      int q = a1 / b1;
      tie(x, x1) = make_tuple(x1, x - q * x1);
      tie(y, y1) = make_tuple(y1, y - q * y1);
      tie(a1, b1) = make_tuple(b1, a1 - q * b1);
    }
    return a1;
}

快速幂

long long fastPower(long long base, long long power)
{
    long long result = 1;
    while (power > 0)
    {
        if (power & 1)	//此处等价于if(power%2==1)
            result = result * base % 1000;
        power >>= 1;	//此处等价于power=power/2
        base = (base * base) % 1000;
    }
    return result;
}

数字字符串转换

#include<iostream>
#include<sstream>
using namespace std;
//数字to字符串
int main()
{
    int x; string s; stringstream ss;
    cin >> x;
    ss << x;//数字流入ss
    ss >> s;//ss流出字符串
    cout << s;
}
//函数类型
string itos(int x,string s)
{
	stringstream ss;
    ss << x;//数字流入ss
    ss >> s;//ss流出字符串
    return s;
}
#include<iostream>
#include<sstream>
using namespace std;
//字符串to数字
int main()
{
    int x; string s; stringstream ss;
    cin >> s;
    ss << s;//字符串流入ss
    ss >> x;//ss流出数字
    cout << x;
}
//函数类型
int stoi(int x,string s)
{
	stringstream ss;
    ss << s;//字符串流入ss
    ss >> x;//ss流出数字
    return x;
}

未整理

//====================并查集================//
#include <bits/stdc++.h>
using namespace std;

const int N = 1e5+5;

int fa[N];

int n, m;

void init()
{
    for(int i=1;i<=n;++i)
    fa[i] = i;
}

int find(int x)//返回祖先节点  此为路径压缩版本  每次都让一个节点的父节点变成根节点(祖先节点)
{
    if(fa[x] != x) fa[x] = find(fa[x]);
    return fa[x];
}

int main()
{
    scanf("%d%d",&n,&m);
    init();
    char c;
    int a,b;
    for(int i=1;i<=m;++i)
    {
        cin >> c >> a >> b;
        if(c == 'M') fa[find(a)] = find(b);
        else{
            if(find(a) == find(b)) printf("Yes\n");
            else printf("No\n");
        }
    }
}

//=========朴素Prim算法求最小生成树O(n^2)============//
#include <bits/stdc++.h>
using namespace std;

const int N = 510,INF = 0x3f3f3f3f;
int n,m;
int g[N][N];
int dist[N];
bool st[N];

int prim()
{
    memset(dist,0x3f,sizeof dist);
    int res = 0;
    for(int i=0;i<n;++i)
    {
        int t = -1;
        for(int j=1;j<=n;++j)
        {
            if(!st[j] && (t == -1 || dist[t] > dist[j]))
            {
                t = j;
            }
        }
        if(i && dist[t] == INF) return INF;//必须同时满足:不是第一个点 且 有边连向集合
        if(i)res += dist[t];
        for(int j=1;j<=n;++j) dist[j] = min(dist[j],g[j][t]);
        st[t] = true;
    }
    return res;
}

int main()
{
    cin >> n >> m;
    memset(g,0x3f,sizeof g);
    for(int i=1;i<=m;++i)
    {
        int u,v,w;
        cin >> u >> v >> w;
        g[u][v] = min(g[u][v],w);
        g[v][u] = min(g[v][u],w);
    }
    int ans = prim();
    if(ans == INF)puts("impossible");
    else cout << ans;
}

//==========堆优化版本prim求最小生成树O(nlogm)===========//
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;

const int MAXN = 510, MAXM = 2 * 1e5 + 10, INF = 0x3f3f3f3f;
typedef pair<int, int> PII;
int h[MAXM], e[MAXM], w[MAXM], ne[MAXM], idx;
bool vis[MAXN];
int n, m;

void add(int a, int b, int c) {
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

int Prim()
{
    memset(vis, false, sizeof vis);
    int sum = 0, cnt = 0;
    priority_queue<PII, vector<PII>, greater<PII>> q;
    q.push({0, 1});

    while (!q.empty())
    {
        auto t = q.top();
        q.pop();
        int ver = t.second, dst = t.first;
        if (vis[ver]) continue;
        vis[ver] = true, sum += dst, ++cnt;

        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (!vis[j]) {
                q.push({w[i], j});
            }
        }
    }

    if (cnt != n) return INF;
    return sum;
}

int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof h);
    for (int i = 0; i < m; ++i)
    {
        int a, b, w;
        cin >> a >> b >> w;
        add(a, b, w);
        add(b, a, w);
    }

    int t = Prim();
    if (t == INF) cout << "impossible" << endl;
    else cout << t << endl; 
}

//=========kruskal求最小生成树O(mlogm)==========//
#include <bits/stdc++.h>
using namespace std;

// const int N = 1e5+5;
const int M = 2e5+5;
int fa[M];
int n,m;
struct node
{
   int u,v,w;
   bool operator <(const node& b)const{
      return w < b.w;
   }
}a[M];

void init()
{
   for(int i=1;i<=n;++i) fa[i] = i;
}

int find(int x)
{
   if(fa[x] != x)fa[x] = find(fa[x]);
   return fa[x];
}
int main()
{
   scanf("%d%d",&n,&m);
   init();
   for(int i=1;i<=m;++i)
   {
      int u,v,w;
      scanf("%d%d%d",&u,&v,&w);
      a[i] = {u,v,w};
   }
   sort(a+1,a+1+m);
   int cnt = 0;
   int ans = 0;
   for(int i=1;i<=m;++i)
   {
      int u = a[i].u, v = a[i].v, w = a[i].w;
      int pa = find(u),pb = find(v);
      if(pa != pb)
      {
         fa[pa] = pb;
         ans += w;
         ++cnt;
      }
   }
   if(cnt < n-1)cout << "impossible";
   else cout << ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值