一.交换排序
1.冒泡排序
基本思想:比较相邻的两个数,如果前者比后者大,则进行交换。每一轮排序结束,选出一个未排序中最大的数放到数组后面。
#include<stdio.h>//冒泡排序算法
void bubbleSort(int *arr, int n)
{
for (int i = 0; i<n - 1; i++)
{
for (int j = 0; j < n - i - 1; j++)
{
//如果前面的数比后面大,进行交换
if (arr[j] > arr[j + 1])
{
int temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp;
}
}
}
}
int main()
{
int arr[] = { 10,6,5,2,3,8,7,4,9,1 };
int n = sizeof(arr) / sizeof(int);
bubbleSort(arr, n);
printf("排序后的数组为:\n");
for (int j = 0; j<n; j++)
printf("%d ", arr[j]);
printf("\n");
return 0;
}
升级版冒泡排序法:通过从低到高选出最大的数放到后面,再从高到低选出最小的数放到前面,如此反复,直到左边界和右边界重合。当数组中有已排序好的数时,这种排序比传统冒泡排序性能稍好。
#include<stdio.h>//升级版冒泡排序算法
void bubbleSort_1(int *arr, int n) {
//设置数组左右边界
int left = 0, right = n - 1;
//当左右边界未重合时,进行排序
while (left<right) {
//从左到右遍历选出最大的数放到数组右边
for (int i =left; i < right; i++)
{
if (arr[i] > arr[i + 1])
{
int temp = arr[i]; arr[i] = arr[i + 1]; arr[i + 1] = temp;
}
}
right--;
//从右到左遍历选出最小的数放到数组左边
for (int j = right;j> left; j--)
{
if (arr[j + 1] < arr[j])
{
int temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp;
}
}
left++;
}
}
int main() {
int arr[] = { 10,6,5,2,3,8,7,4,9,1 };
int n = sizeof(arr) / sizeof(int);
bubbleSort_1(arr, n);
printf("排序后的数组为:\n");
for (int j = 0; j<n; j++)
printf("%d ", arr[j]);
printf("\n");
return 0;
}
2.快速排序
基本思想:选取一个基准元素,通常为数组最后一个元素(或者第一个元素)。从前向后遍历数组,当遇到小于基准元素的元素时,把它和左边第一个大于基准元素的元素进行交换。在利用分治策略从已经分好的两组中分别进行以上步骤,直到排序完成。下图表示了这个过程。
#include<stdio.h>
void swap(int *x, int *y) {
int tmp = *x;
*x = *y;
*y = tmp;
}
//分治法把数组分成两份
int patition(int *a, int left,int right) {
int j = left; //用来遍历数组
int i = j - 1; //用来指向小于基准元素的位置
int key = a[right]; //基准元素
//从左到右遍历数组,把小于等于基准元素的放到左边,大于基准元素的放到右边
for (; j < right; ++j) {
if (a[j] <= key)
swap(&a[j], &a[++i]);
}
//把基准元素放到中间
swap(&a[right], &a[++i]);
//返回数组中间位置
return i;
}//快速排序void quickSort(int *a,int left,int right) {
if (left>=right)
return;
int mid = patition(a,left,right);
quickSort(a, left, mid - 1);
quickSort(a, mid + 1, right);
}int main() {
int a[] = { 10,6,5,7,12,8,1,3,11,4,2,9,16,13,15,14 };
int n = sizeof(a) / sizeof(int);
quickSort(a, 0,n-1);
printf("排序好的数组为:");
for (int l = 0; l < n; l++) {
printf("%d ", a[l]);
}
printf("\n");
return 0;
}
二.插入排序
1.直接插入排序
基本思想:和交换排序不同的是它不用进行交换操作,而是用一个临时变量存储当前值。当前面的元素比后面大时,先把后面的元素存入临时变量,前面元素的值放到后面元素位置,再到最后把其值插入到合适的数组位置。
#include<stdio.h>
void InsertSort(int *a, int n) {
int tmp = 0;
for (int i = 1; i < n; i++) {
int j = i - 1;
if (a[i] < a[j]) {
tmp = a[i];
a[i] = a[j];
while (tmp < a[j-1]) {
a[j] = a[j-1];
j--;
}
a[j] = tmp;
}
}
}
int main() {
int a[] = { 11,7,9,22,10,18,4,43,5,1,32};
int n = sizeof(a)/sizeof(int);
InsertSort(a, n);
printf("排序好的数组为:");
for (int i = 0; i < n; i++) {
printf(" %d", a[i]);
}
printf("\n");
return 0;
}
2.希尔(shell)排序
基本思想为在直接插入排序的思想下设置一个最小增量dk,刚开始dk设置为n/2。进行插入排序,随后再让dk=dk/2,再进行插入排序,直到dk为1时完成最后一次插入排序,此时数组完成排序。
#include<stdio.h>// 进行插入排序//
初始时从dk开始增长,每次比较步长为dk
void Insrtsort(int *a, int n,int dk) {
for (int i = dk; i < n; ++i) {
int j = i - dk;
if (a[i] < a[j]) { // 比较前后数字大小
int tmp = a[i]; // 作为临时存储
a[i] = a[j];
while (a[j] > tmp) { // 寻找tmp的插入位置
a[j+dk] = a[j];
j -= dk;
}
a[j+dk] = tmp; // 插入tmp }
}
}
void ShellSort(int *a, int n) {
int dk = n / 2; // 设置初始dk
while (dk >= 1) {
Insrtsort(a, n, dk);
dk /= 2;
}
}
int main() {
int a[] = { 5,12,35,42,11,2,9,41,26,18,4 };
int n = sizeof(a) / sizeof(int);
ShellSort(a, n);
printf("排序好的数组为:");
for (int j = 0; j < n; j++) {
printf("%d ", a [j]);
}
return 0;
}
三.选择排序
1.直接选择排序
基本思想:依次选出数组最小的数放到数组的前面。首先从数组的第二个元素开始往后遍历,找出最小的数放到第一个位置。再从剩下数组中找出最小的数放到第二个位置。以此类推,直到数组有序。
#include<stdio.h>
void SelectSort(int *a, int n) {
for (int i = 0; i < n; i++)
{
int key = i; // 临时变量用于存放数组最小值的位置
for (int j = i + 1; j < n; j++) {
if (a[j] < a[key]) {
key = j; // 记录数组最小值位置 }
}
if (key != i)
{
int tmp = a[key]; a[key] = a[i]; a[i] = tmp; // 交换最小值 }
}
}int main() {
int a[] = { 12,4,15,2,6,22,8,10,1,33,45,24,7 };
int n = sizeof(a) / sizeof(int);
SelectSort(a, n);
printf("排序好的数组为: ");
for (int k = 0; k < n; k++)
printf("%d ", a[k]);
printf("\n");
return 0;
}
2.堆(Heap)排序
基本思想:先把数组构造成一个大顶堆(父亲节点大于其子节点),然后把堆顶(数组最大值,数组第一个元素)和数组最后一个元素交换,这样就把最大值放到了数组最后边。把数组长度n-1,再进行构造堆,把剩余的第二大值放到堆顶,输出堆顶(放到剩余未排序数组最后面)。依次类推,直至数组排序完成。
下图为堆结构及其在数组中的表示。可以知道堆顶的元素为数组的首元素,某一个节点的左孩子节点为其在数组中的位置2,其右孩子节点为其在数组中的位置2+1,其父节点为其在数组中的位置/2(假设数组从1开始计数)。
下图为怎么把一个无序的数组构造成一个大堆顶结构的数组的过程,注意其是从下到上,从右到左,从右边第一个非叶子节点开始构建的。
#include<stdio.h>
// 创建大堆顶,i为当节点,n为堆的大小// 从第一个非叶子结点i从下至上,从右至左调整结构// 从两个儿子节点中选出较大的来与父亲节点进行比较// 如果儿子节点比父亲节点大,则进行交换void CreatHeap(int a[], int i, int n) {
// 注意数组是从0开始计数,所以左节点为2*i+1,右节点为2*i+2
for (; i >= 0; --i)
{
int left = i * 2 + 1; //左子树节点
int right = i * 2 + 2; //右子树节点
int j = 0;
//选出左右子节点中最大的
if (right < n) {
a[left] > a[right] ? j= left : j = right;
}
else
j = left;
//交换子节点与父节点
if (a[j] > a[i]) {
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
}
}
// 进行堆排序,依次选出最大值放到最后面void HeapSort(int a[], int n) {
//初始化构造堆
CreatHeap(a, n/2-1, n);
//交换第一个元素和最后一个元素后,堆的大小减1
for (int j = n-1; j >= 0; j--) {
//最后一个元素和第一个元素进行交换
int tmp = a[0];
a[0] = a[j];
a[j] = tmp;
int i = j / 2 - 1;
CreatHeap(a, i, j);
}
}int main() {
int a[] = { 10,6,5,7,12,8,1,3,11,4,2,9,16,13,15,14 };
int n = sizeof(a) / sizeof(int);
HeapSort(a, n);
printf("排序好的数组为:");
for (int l = 0; l < n; l++) {
printf("%d ", a[l]);
}
printf("\n");
return 0;
}
四.归并排序
基本思想:归并算法应用到分治策略,简单说就是把一个答问题分解成易于解决的小问题后一个个解决,最后在把小问题的一步步合并成总问题的解。这里的排序应用递归来把数组分解成一个个小数组,直到小数组的数位有序,在把有序的小数组两两合并而成有序的大数组。
下图为展示如何归并的合成一个数组。
下图展示了归并排序过程各阶段的时间花费。
#include <stdio.h>
#include <limits.h>
// 合并两个已排好序的数组void Merge(int a[], int left, int mid, int right)
{
int len = right - left + 1; // 数组的长度
int *temp = new int[len]; // 分配个临时数组
int k = 0;
int i = left; // 前一数组的起始元素
int j = mid + 1; // 后一数组的起始元素
while (i <= mid && j <= right)
{
// 选择较小的存入临时数组
temp[k++] = a[i] <= a[j] ? a[i++] : a[j++];
}
while (i <= mid)
{
temp[k++] = a[i++];
}
while (j <= right)
{
temp[k++] = a[j++];
}
for (int k = 0; k < len; k++)
{
a[left++] = temp[k];
}
}
// 递归实现的归并排序void MergeSort(int a[], int left, int right)
{
if (left == right)
return;
int mid = (left + right) / 2;
MergeSort(a, left, mid);
MergeSort(a, mid + 1, right);
Merge(a, left, mid, right);
}
int main() {
int a[] = { 5,1,9,2,8,7,10,3,4,0,6 };
int n = sizeof(a) / sizeof(int);
MergeSort(a, 0, n - 1);
printf("排序好的数组为:");
for (int k = 0; k < n; ++k)
printf("%d ", a[k]);
printf("\n");
return 0;
}