1. 模2运算
模2运算是一种二进制算法,CRC校验技术中的核心部分。本质是异或运算,且不考虑进位和借位。
2. 模2加法
0+0=0 0+1=1 1+0=1 1+1=0
例如0101 + 0011 = 0110,列竖式计算:
0 1 0 1
+ 0 0 1 1
—————————————
0 1 1 0
3. 模2减法
0-0=0 0-1=1 1-0=1 1-1=0
例如0110-0011=0101,列竖式计算:
0 1 1 0
- 0 0 1 1
—————————————
0 1 0 1
4. 模2乘法
0×0=0 0×1=0 1×0=0 1×1=1
- 多位二进制模2乘法类似于普通意义上的多位二进制乘法
- 不同之处在于后者累加中间结果(或称部分积)时采用带进位的加法
- 模2乘法对中间结果的处理方式采用的是模2加法
例如1011 × 101=100111,列竖式计算:
1 0 1 1
× 1 0 1
———————————————————
1 0 1 1
0 0 0 0
+ 1 0 1 1
———————————————————
1 0 0 1 1 1
5. 模2除法
被除数位数足够,即位数 ≥ 除数位数,则商对应写1,不够则商对应写0。
得到的余数
始终比除数
位数少1。
例如1011 × 101=100111,列竖式计算:
(1)11010位数足够,对应商写1
(2)异或运算得10011,位数同样足够,对应商写1
(3)将异或运算的结果和除数相减,得00000,省略不写,向后拿1,位数不够商对应为0。后面的几个0同理,直到向后拿0,得到10110,位数足够,商对应为1
(4)之后的运算都同理,直到被除数没有数可拿后,得到4位余数