题目来源:王晓东,《算法设计与分析》
长江游艇俱乐部在长江上设置了n个游艇出租站1,2,…,n。游客可在这些游艇出租站租用游艇,并在下游的任何一个游艇出租站归还游艇。游艇出租站i到游艇出租站j之间的租金为r(i,j),1<=i<j<=n。试设计一个算法,计算出从游艇出租站1 到游艇出租站n所需的最少租金。
解题思路:
1、这是一道动态规划的题,先看输入,第i行表示第i站到第 i+1 站,第 i+2 站, … , 第 n 站的租金,也就是说,我们可以将它转化为倒三角的形式。
2、接着,要求最小租金,等价于比较倒三角的直角顶点和斜边上所有点的和,斜边上所有点的和可以通过递归求得。
AC代码如下:
#include<iostream>
using namespace std;
// 由于要求最少租金,所以写一个找最小值的函数
int choose_small(int x, int y)
{
if(x<y) return x;
return y;
}
int main()
{
int n;
cin>>n;
int a[n+1][n+1]; // 定义一个二维数组存放输入数据
for(int i=1; i<=n; i++)
{
for(int j=i+1; j<=n; j++)
{
cin>>a[i][j]; //输出二维数组 (倒三角)
}
}
int min[n+1]={0}; //定义一个一维数组临时存放结果
for(int i=2; i<=n; i++) //从i+1站开始,所以i从2开始
{
min[i]=a[1][i];
for(int j=1; j<i; j++)
{
min[i]=choose_small(min[i], min[j]+a[j][i]); //递推式
}
}
cout<<min[n]<<endl;
return 0;
}