- 博客(6)
- 收藏
- 关注
原创 时空图神经网络5——TCN
在 TCN 出现之前,深度学习背景下的序列建模主题主要与递归神经网络架构有关,如RNN、LSTM、GRU。在很多任务中发现,卷积网络可以取得比 RNNs 更好的性能,同时避免了递归模型的常见缺陷,如梯度爆炸/消失问题或缺乏内存保留。
2025-05-11 12:57:30
1067
原创 时空图神经网络4——GAT
在实际生活中,很多对象可以被看作图结构,有时候他们的边有相似但却又不同的性质。比如交通网络中,每一条道路都可以被看作边,每条路的情况却不同:有的是单行道,有的是双车道,有的是四车道,显然会对节点有不同程度的影响。那我们如何考虑这种影响?
2025-05-08 11:36:16
1177
原创 时空图神经网络2——RNN和GRU
我们的目标是学习时空图神经网络,关于图神经网络的一些基本知识前面已经讲过了,满足了“空”的要求,现在要学习一下循环神经网络RNN及变体GRU的知识满足“时”的要求。另外,我是外行,这些内容都是我临时自学并基于自己的理解写的,可能会有很多不足。
2025-04-29 18:05:27
1052
翻译 时空图神经网络1——GNN和GCN
学习时序图神经网络需要对图神经网络有基本的认识,首先从最简单的GNN和GCN开始讲起。本文在理解原文的基础上,参考了其他博主的blog,整理出来作为笔记,既给自己看,也分享给大家。图神经网络(Graph Neural Network, GNN)是一种专门用于处理图数据的深度学习模型。传统的神经网络主要用于处理向量或序列数据,而图神经网络则可以有效地处理非结构化的图形数据,如社交网络、推荐系统中的用户-物品关系、生物信息学中的蛋白质相互作用网络等。
2025-04-25 23:00:49
176
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人