【LC插件开发】基于Java实现FSRS(自由间隔重复调度算法)

在这里插入图片描述

😊你好,我是小航,一个正在变秃、变强的文艺倾年。
🔔本文讲解【LC插件开发】基于Java实现FSRS(自由间隔重复调度算法),期待与你一同探索、学习、进步,一起卷起来叭!

一、FSRS

FSRS(Frequent Spaced Repetition System)是一种基于动态间隔重复的记忆算法,本算法基于 SuperMemo 作者 Piotr Wozniak 提出的 DSR 模型开发。该模型考虑了影响记忆的三个变量:难度(difficulty),稳定性(stability)和可提取性(retrievability)。

  • 稳定性指的是记忆的存储强度,越高,记忆遗忘得越慢。
  • 可提取性指的是记忆的检索强度,越低,记忆遗忘的概率越高。

本文重点从下面三个角度进行复现:

  1. ​使用稳定性(stability)难度(difficulty)两个参数动态调整复习策略
  2. ​定义4种评分等级(AGAIN/GOOD/HARD/EASY)触发不同的参数更新规则
    3.基于指数衰减模型和机器学习参数优化复习间隔

在本模型中,考虑了以下记忆规律:

  • 记忆材料越难,记忆稳定性增长越慢
  • 记忆稳定性越高,记忆稳定性增长越慢(又称为记忆稳定化衰减)
  • 记忆可提取性越低,记忆稳定性增长越快(又称为记忆稳定化曲线)

二、算法实现

卡片状态

public enum FSRSState {
    /**
     * 从未学习过
     */
    NEW(0),
    /**
     * 刚刚第一次学习
     */
    LEARNING(1),
    /**
     * 完成LEARNING状态
     */
    REVIEW(2),
    /**
     * 在REVIEW状态时忘记
     */
    RELEARNING(3);
}

状态更新

在这里插入图片描述

public void updateState() {
    if (this.state == FSRSState.NEW) {
        // NEW → Learning阶段初始化
        this.ratingToCard.get(FSRSRating.AGAIN).setState(FSRSState.LEARNING);
        this.ratingToCard.get(FSRSRating.HARD).setState(FSRSState.LEARNING);
        this.ratingToCard.get(FSRSRating.GOOD).setState(FSRSState.LEARNING);
        this.ratingToCard.get(FSRSRating.EASY).setState(FSRSState.REVIEW);
    } else if(this.state == FSRSState.LEARNING || this.state == FSRSState.RELEARNING) {
        // Learning → Review阶段转换
        this.ratingToCard.get(FSRSRating.AGAIN).setState(this.state);
        this.ratingToCard.get(FSRSRating.HARD).setState(FSRSState.REVIEW);
        this.ratingToCard.get(FSRSRating.GOOD).setState(FSRSState.REVIEW);
        this.ratingToCard.get(FSRSRating.EASY).setState(FSRSState.REVIEW);
    } else if(this.state == FSRSState.REVIEW) {
        // Review → Relearning触发条件
        this.ratingToCard.get(FSRSRating.AGAIN).setState(FSRSState.RELEARNING);
        // 其他评分保持Review状态
    }
}

评分等级

public enum FSRSRating {
    /**
     * 忘记;错误答案
     */
    AGAIN(0),
    /**
     * 回忆起来;经过一定困难才答出的正确答案
     */
    HARD(1),
    /**
     * 经过延迟答出的正确答案
     */
    GOOD(2),
    /**
     * 完美答案
     */
    EASY(3);
}

算法结果返回

 private int interval;
 private long dueTime, lastReview;
 private float stability, difficulty;
 private int elapsedDays, repetitions;
 private FSRSState state;
字段名称数据类型描述
intervalint计划复习间隔(天)
dueTimelong下次复习截止时间戳(毫秒)
lastReviewlong上次复习时间戳(毫秒)
stabilityfloat内容稳定性(0.1-∞)
difficultyfloat内容难度(1-10)
elapsedDaysint自上次复习经过的天数
repetitionsint已完成的复习次数
state枚举当前卡片状态(NEW/LEARNING/REVIEW等)

算法逻辑

算法整体流程如下:

在这里插入图片描述

核心参数配置

// 算法核心参数配置
private final float REQUEST_RETENTION = 0.9F;   // 目标记忆保留率(90%)
private final int MAXIMUM_INTERVAL = 36500;    // 最大复习间隔(365天)
private final float EASY_BONUS = 1.3F;        // 容易卡片间隔奖励系数
private final float HARD_FACTOR = 1.2F;         // 困难卡片难度系数
private final float[] WEIGHTS = new float[]{1F, 1F, 5F, -1F, -1F, 0.1F, 1.5F, -0.2F, 0.8F, 2, -0.2F, 0.2F, 1F}; /* 各参数权重配置 */

New状态

this.init(); // 初始化难度/稳定性
this.card.setElapsedDays(0);

// 设置首次复习时间
this.card.getRatingToCard().get(FSRSRating.AGAIN).setDueTime(... + 1分钟);
this.card.getRatingToCard().get(FSRSRating.GOOD).setDueTime(... + 10分钟);
this.card.getRatingToCard().get(FSRSRating.HARD).setDueTime(... + 15分钟);
  • 难度:1.0 ~ 10.0(均值5.0)
  • 稳定性:0.1 ~ 0.5(均值0.3)

REVIEW状态

float retrievability = (float) Math.exp(Math.log(0.9) * interval / lastStability);
this.next(lastDifficulty, lastStability, retrievability); // 动态调整参数

LEARNING状态

hardInterval = nextInterval(...); 
goodInterval = Math.max(nextInterval(...), hardInterval + 1);
easyInterval = Math.max(nextInterval(...), goodInterval + 1);
this.card.schedule(hardInterval, goodInterval, easyInterval);
  • 间隔梯度:HARD < GOOD < EASY

公式讲解

下次复习间隔计算

i n t e r v a l = stability × ln ⁡ ( 0.9 ) ln ⁡ ( 1 R ) interval = \frac{\text{stability} \times \ln(0.9)}{\ln\left(\frac{1}{R}\right)} interval=ln(R1)stability×ln(0.9)

代码实现:

interval = stability * log(0.9) / log(1/retention_rate)
难度更新公式

Δ d = W 4 × ( r − 2 ) new_difficulty = min ⁡ ( max ⁡ ( μ ( W 2 , current_difficulty ) + Δ d , 1 ) , 100 ) \Delta d = W_4 \times (r - 2) \\ \text{new\_difficulty} = \min\left(\max\left(\mu(W_2, \text{current\_difficulty}) + \Delta d, \quad 1\right), \quad 100\right) Δd=W4×(r2)new_difficulty=min(max(μ(W2,current_difficulty)+Δd,1),100)
其中均值回归:
μ ( a , b ) = W 5 × a + ( 1 − W 5 ) × b \mu(a, b) = W_5 \times a + (1 - W_5) \times b μ(a,b)=W5×a+(1W5)×b

代码实现:

private float nextDifficulty(float difficulty, int retrievability) {
    return Math.min(Math.max(meanReversion(WEIGHTS[2], difficulty + WEIGHTS[4]*(retrievability-2)), 1), 10);
}

示例场景

用户首次学习新卡片

在这里插入图片描述

用户回答"GOOD"后

在这里插入图片描述

📌 [ 笔者 ]   文艺倾年
📃 [ 更新 ]   2025.3.23
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,
              本人也很想知道这些错误,恳望读者批评指正!

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值