62. 不同路径(动态规划)

不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。问总共有多少条不同的路径?

示例 1:
输入:m = 3, n = 7
输出:28

示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向下

示例 3:
输入:m = 7, n = 3
输出:28

示例 4:
输入:m = 3, n = 3
输出:6


解题思路

动态规划dp

  1. 全局最优解中一定包含某个局部最优解,但不一定包含前一个局部最优解,因此需要记录之前的所有最优解
  2. 动态规划的关键是状态转移方程,即如何通过已经求出的局部最优解来推导全局最优解
  3. 边界条件:即最简单的,可以直接得出的局部最优解

因为图中的机器人每次只能向下或向右移动一步,用 dp[i][j] 表示到坐标 (i,j) 这个格内有多少条不同的路径。

状态转移方程dp[i][j] = dp[i - 1][j] + dp[i][j - 1],其中 dp[i - 1][j] 是从上面能够走过来的总路径数;dp[i][j - 1] 是从左面能够走过来的总路径数。
边界条件:最简单的,即当只有一行或一列时,到达 Finish 只有一条路径,所以边界的值均设置为 1。


代码

class Solution {

    public int uniquePaths(int m, int n) {

        int[][] dp = new int[m][n];
        for (int i=0;i<m;i++) {

            dp[i][0] = 1;
        }
        for (int j=0;j<n;j++) {

            dp[0][j] = 1;
        }
        for (int i=1;i<m;i++) {

            for (int j=1;j<n;j++) {

                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
}

时间复杂度:有 for 循环的嵌套,所以复杂度为O(m * n)
空间复杂度:开辟了一个二维数组,所以复杂度为O(m * n)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值