排序笔记总结了如下排序算法
1.插入排序
2.选择排序
3.冒泡排序
4.希尔排序
5.快速排序
6.堆排序
7.归并排序
用以上七种方法把如下序列排序
int a[] ={49 ,38 ,65 ,97 ,76 ,13 ,27 ,49}
一.插入排序
插入排序的思想就是从未排序的那堆数中取出一个数,插入到已经排好序的序列里先抛开代码,将以上思想变成可执行的操作
升序序列:
1.从未排序的那堆数中取出一个数:因为没有排序过,可以把第一个元素49视为已排好的元素,把第二个元素及其以后的元素视为未排序的序列。
已经排好的序列 49
没有排好的序列 38 65 ,97 ,76 ,13 ,27 ,49
数组a = {49,38 65 ,97 ,76 ,13 ,27 ,49}
取第二个元素38。
2.插入到已经排好序的序列里38<49,所以有已经排好的序列 38 49
没有排好的序列 65 ,97 ,76 ,13 ,27 ,49
数组a = {38, 49, 65 ,97 ,76 ,13 ,27 ,49}
把以上两个步骤重复,简化一下可以得到:
取元素65
已经排好的序列 38 49 65
没有排好的序列 97 ,76 ,13 ,27 ,49
数组a = {38, 49, 65 ,97 ,76 ,13 ,27 ,49}
取元素97
已经排好的序列 38 49 65 97
没有排好的序列 76 ,13 ,27 ,49
数组a = {38 49 65 97 76 ,13 ,27 ,49}
取元素76
已经排好的序列 38 49 65 76 97
没有排好的序列 13 ,27 ,49
数组a = {38 49 65 76 97 ,13 ,27 ,49}
取元素13
已经排好的序列 13 38 49 65 76 97
没有排好的序列 27 ,49
数组a = {13 38 49 65 76 97 ,27 ,49}
取元素27
已经排好的序列 13 27 38 49 65 76 97
没有排好的序列 49
数组a = {13 27 38 49 65 76 97 ,49}
取元素49
已经排好的序列 13 27 38 49 49 65 76 97
没有排好的序列数组a = {13 27 38 49 49 65 76 97}
至此排序结束为了节省空间,仅用一个数组空间就可以完成,不需要申请另外的空间。
已经排好的序列长度 + 没有排好的序列长度 = 原序列长度
将排好的序列放在整个序列的前面,但是这样做需要移动元素给要插入的元素腾出位置比如,在插入13的时候,13是最小的,应该放在整个数组的最前面。所以,所有的元素要整体向后面移动一位,将数组第一个位置空出来放13
下面是用代码实现
#define ElementType int
void InsertSort(ElementType a[],int N)
//N代表数组a的长度
{
printf("InsertSort\n");
int i,j,temp;
for(i=1;i<N;++i){//从第二个元素开始
temp = a[i];//保存第i个元素
//选择合适的位置插入
//如果temp比a[j]小,那么temp一定在a[j]前面,a[j]要向后移动
for(j=i-1;j>-1&&temp<a[j];--j){
a[j+1] = a[j];//a[j]向后移动一位
}
a[j+1] = temp;
//找到合适的位置插入a[i]
}
}
分析:
假设有一个已经排好序的序列,使用插入排序算法对其进行排序。不需要移动元素,仅需要比较N-1次元素就可以了
假设有一个逆序序列,n n-1 …5 4 3 2 1 ,使用插入排序进行排序,需要比较
1+2+3+4…n-1 = [(n-1)*n]/2 次
假设有一个随机序列,取上述两种的情况的平均值,(n*n+n-2)/2次,算法复杂度为O(N^2)
直接插入排序算法非常简便,当排序记录非常少的时候,这是一种非常好的排序方法,如果排序量非常大,不宜使用直接插入排序