蓝桥杯训练营第一周相关作业
1题 跑步训练
问题描述
小明要做一个跑步训练,初始时,小明充满体力,体力值计为 10000。
如果小明跑步,每分钟损耗 600 的体力。
如果小明休息,每分钟增加 300 的体力。
体力的损耗和增加都是 均匀变化的。
小明打算跑一分钟、休息一分钟、再跑一分钟、再休息一分钟……如此循环。
如果某个时刻小明的体力到达 0,他就停止锻炼, 请问小明在多久后停止锻炼。
为了使答案为整数,请以秒为单位输出答案,答案中只填写数,不填写单位。
答案提交
这是一道结果填空题,你只需要算出结果后提交即可。
本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
思路加代码如下:
start = 10000
time = 0
while True:
start-=300 #这可以直接当作每两分钟,损耗300的体力
time+=120
if start<600:
break
while start !=0: # 因为1分钟消耗600体力,所以每消耗10体力时间就增加1秒
start-=10
time+=1
print(time)
答案:3880
2题 阶乘约数
问题描述
定义阶乘 n! = 1 × 2 × 3 × ··· × n。
请问 100! (100 的阶乘)有多少个约数。
答案提交
这是一道结果填空的题,你只需要算出结果后提交即可。
本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
思路及代码如下:
import math
def count(num: int):
k, ans = 2, 1
while k < (num // k):
p = 1
while num % k == 0:
num //= k
p += 1
ans *= p
k += 1
if num > 1:
ans *= 2
return ans
if __name__ == '__main__':
n = math.factorial(100)
print(f"100! = {n}")
答案:39001250856960000
3题 出栈次序
问题描述
X星球特别讲究秩序,所有道路都是单行线。
一个甲壳虫车队,共16辆车,按照编号先后发车,夹在其它车流中,缓缓前行。
路边有个死胡同,只能容一辆车通过,是临时的检查站,如图所示。
X星球太死板,要求每辆路过的车必须进入检查站,也可能不检查就放行,也可能仔细检查。
如果车辆进入检查站和离开的次序可以任意交错。
那么,该车队再次上路后,可能的次序有多少种?
为了方便起见,假设检查站可容纳任意数量的汽车。
显然,如果车队只有1辆车,可能次序1种;2辆车可能次序2种;3辆车可能次序5种。
现在足足有16辆车啊,亲!需要你计算出可能次序的数目。
答案提交
这是一个整数,请通过浏览器提交答案,不要填写任何多余的内容(比如说明性文字)。
思路及代码如下:
result=1
for x in range(1,17):
result=result*(4*x-2)/(x+1)
print(result)
答案:35357670
4题 哥德巴赫分解
思路及代码如下:
x = []
def gdbh(n):
def IsPrime(num):
if num == 2:
return True
for i in range(2,num):
if num % i == 0:
return False
return True
for j in range(2, n // 2 + 1):
if IsPrime(j) and IsPrime(n - j):
return [j,n-j]
for i in range(4,10001,2):
x.append(min(gdbh(i)))
print(max(x))
答案:173
5题 图书排列
问题描述
将编号为1~10的10本书排放在书架上,要求编号相邻的书不能放在相邻的位置。
请计算一共有多少种不同的排列方案。
注意,需要提交的是一个整数,不要填写任何多余的内容。
思路及代码如下:
import itertools
book = [1,2,3,4,5,6,7,8,9,10]
sum = 0
for i in itertools.permutations(book,10):
if abs(i[0]-i[1])!=1 and abs(i[1]-i[2])!=1 and abs(i[2]-i[3])!=1 and abs(i[3]-i[4])!=1 and abs(i[4]-i[5])!=1 and abs(i[5]-i[6])!=1 and abs(i[6]-i[7])!=1 and abs(i[7]-i[8])!=1 and abs(i[8]-i[9])!=1:
sum += 1
print(sum)
答案:479306
6题 猴子分香蕉
问题描述
思路及代码如下:
for i in range(1, 10000):
a = i
if (i-1)%5 == 0:
i = (i-1)/5
i = i*4
if (i-2)%5==0:
i = (i - 2) / 5
i = i * 4
if (i-3)%5 == 0:
i = (i - 3) / 5
i = i * 4
if (i-4)%5==0:
i = (i - 4) / 5
i = i * 4
if i and i%5 == 0:
print(a)
答案:3141
7题 稍小分数
问题描述
回到小学----
真分数:分子小于分母的分数
既约分数:分子分母互质,也就是说最大公约数是1
x星球数学城的入口验证方式是:
屏幕上显示一个真分数,需要你快速地找到一个比它小的既约分数,要求这个分数越大越好。
同时限定你的这个分数的分母不能超过100。
思路及代码(用的C语言)如下:
#include<cstdio>
int gcd(int a, int b)
{
if(b==0) return a;
return gcd(b,a%b);
}
int main()
{
int a = 7;
int b = 13;
int m,n;
int max_a = 0;
int max_b = 1;
for(n=100; n>1; n--){
for(m=n-1; m>=1; m--){
if(m*b<a*n && gcd(m,n)==1)
{
if( m*max_b>n*max_a )//找最大的分数
{
max_a = m;
max_b = n;
break;
}
}
}
}
printf("%d/%d\n", max_a, max_b);
return 0;
}
8题 excel地址
问题描述
Excel单元格的地址表示很有趣,它使用字母来表示列号。
比如,
A表示第1列,
B表示第2列,
Z表示第26列,
AA表示第27列,
AB表示第28列,
BA表示第53列,
…
当然Excel的最大列号是有限度的,所以转换起来不难。
如果我们想把这种表示法一般化,可以把很大的数字转换为很长的字母序列呢?
本题目即是要求对输入的数字, 输出其对应的Excel地址表示方式。
数据规模和约定
我们约定,输入的整数范围[1,2147483647]
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
思路及代码如下:
x = [chr(i) for i in range(65,91)]
n = int(input())
res = []
while n != 0:
if n % 26 == 0:
res.append(26)
n = n // 26 - 1
else:
res.append(n % 26)
n = n//26
for i in range(len(res)):
res[i] = x[res[i]-1]
res.reverse()
print(''.join(res))
9题 日期问题
问题描述
小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。
比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。
给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?
思路及代码如下:
n = input()
a = []
m = {1:31, 2:30, 3:31,4:30,5:31,6:30,7:31,8:31,9:30,10:31,11:30,12:31}
a.append(n[:2])
a.append(n[3:5])
a.append(n[6:])
res = []
if int(a[0]) in range(60):
res.append(['20'+a[0]])
res[0].append(a[1])
res[0].append(a[2])
if int(a[2]) > m[int(a[1])] or int(a[1]) > 12:
res[-1] = []
else:
res.append(['19'+a[0]])
res[0].append(a[1])
res[0].append(a[2])
if int(a[2]) > m[int(a[1])] or int(a[1]) > 12:
res[-1] = []
if int(a[2]) in range(60):
res.append(['20'+a[2]])
res[1].append(a[1])
res[1].append(a[0])
if int(a[0]) > m[int(a[1])] or int(a[1]) > 12:
res[-1] = []
else:
res.append(['19'+a[2]])
res[1].append(a[1])
res[1].append(a[0])
if int(a[0]) > m[int(a[1])] or int(a[1]) > 12:
res[-1] = []
if int(a[2]) in range(60):
res.append(['20'+a[2]])
res[2].append(a[0])
res[2].append(a[1])
if int(a[0]) > 12 or int(a[1]) > m[int(a[0])]:
res[-1] = []
else:
res.append(['19'+a[2]])
res[2].append(a[0])
res[2].append(a[1])
if int(a[0]) > 12 or int(a[1]) > m[int(a[0])]:
res[-1] = []
a = []
print(res)
for i in range(3):
if res[i] != []:
a.append('-'.join(res[i]))
print(a)
10题 整数划分
问题描述
对于一个正整数n的划分,就是把n变成一系列正整数之和的表达式。注意,分划与顺序无关,例如6=5+1.跟6=1+5是同一种分划,另外,这个整数本身也是一种分划。
例如:对于正整数n=5,可以划分为:
1+1+1+1+1
1+1+1+2
1+1+3
1+2+2
2+3
1+4
5
输入描述
输入一个正整数n
输出描述
输出n整数划分的总数k
输入样例
5
输出样例
7
思路及代码如下:
#include<stdio.h>
int resolve(int a,int max)
{
if(a == 1||max ==1)
return 1;
if(a == max)
return resolve(a,max-1)+1;
if(a > max)
return resolve(a,max-1)+resolve(a-max,max);
if(a < max)
return resolve(a,a);
else return 0;
}
int main()
{
int n;
int sum;
scanf("%d",&n);
sum = resolve(n,n);
printf("%d",sum);
return 0;
}
即可解决
11题 一步之遥
问题描述
从昏迷中醒来,小明发现自己被关在X星球的废矿车里。
矿车停在平直的废弃的轨道上。
他的面前是两个按钮,分别写着“F”和“B”。
小明突然记起来,这两个按钮可以控制矿车在轨道上前进和后退。
按F,会前进97米。按B会后退127米。
透过昏暗的灯光,小明看到自己前方1米远正好有个监控探头。
他必须设法使得矿车正好停在摄像头的下方,才有机会争取同伴的援助。
或许,通过多次操作F和B可以办到。
矿车上的动力已经不太足,黄色的警示灯在默默闪烁…
每次进行 F 或 B 操作都会消耗一定的能量。
小明飞快地计算,至少要多少次操作,才能把矿车准确地停在前方1米远的地方。
请填写为了达成目标,最少需要操作的次数。
思路及代码如下:
x = 97
y = 127
ans = 600
for i in range(300):
for j in range(300):
if i*x - j* y==1:
ans = min(ans, i+j)
print(ans)
答案:97步( 前进55步,后退42步)
12题 机器人塔
问题描述
X星球的机器人表演拉拉队有两种服装,A和B。
他们这次表演的是搭机器人塔。
类似:
A
B B
A B A
A A B B
B B B A B
A B A B B A
队内的组塔规则是:
A 只能站在 AA 或 BB 的肩上。
B 只能站在 AB 或 BA 的肩上。
你的任务是帮助拉拉队计算一下,在给定A与B的人数时,可以组成多少种花样的塔。
输入一行两个整数 M 和 N,空格分开(0<M,N<500),分别表示A、B的人数,保证人数合理性。
要求输出一个整数,表示可以产生的花样种数。
思路及代码(C++)如下:
#include<iostream>
#include<bitset>
#include<cmath>
using namespace std;
int n, m;
int nbit(int num) {
int ans = 0;
while(num){
num = (num-1) & num;
ans++;
}
return ans;
}
bool check(int now, int floor) {
int num_a = 0, num_b = 0;
for (int i = floor; i >= 1; i--) {//i是层数,也是机器人个数
int count1 = nbit(now);//now里面有多少1
num_b += count1;
num_a += i - count1;//now里面有多少0
//下面开始求上一层的now
now ^= now >> 1;
now &= (1 << (i - 1)) - 1; // 消掉高位
if (num_a > m || num_b >> n) return false;// 可以提升一点性能
}
return num_a == m && num_b == n;
}
int main() {
cin >> m >> n;
int floor = sqrt((n + m) * 2);
int ans = 0;
for (int i = 0; i < (1 << floor); i++) {
if (check(i, floor))
ans++;
}
cout << ans << endl;
}
13题 七星填空
问题描述
如下图所示。在七角星的 14 个节点上填入 1 ~ 14的数字,不重复,不遗漏。 要求每条直线上的四个数字之和必须相等。
图中已经给出了 3 个数字。 请计算其它位置要填充的数字,答案唯一。
填好后,请输出绿色节点的 4 个数字(从左到右,用空格分开)。
思路及代码如下:
import itertools
x = [i for i in range(1, 15)]
x.remove(6)
x.remove(11)
x.remove(14)
def check(a):
num1 = a[0] + a[1] + a[2] + a[3]
num2 = 6 + a[1] + a[4] + 14
if num1 != num2:
return False
num3 = 6 + a[2] + a[5] + 11
if num2 != num3:
return False
num4 = a[3] + a[5] + a[7] + a[10]
if (num3 != num4):
return False
num5 = a[8] + a[9] + a[7] + 11
if (num4 != num5):
return True
num6 = a[6] + a[10] + a[8] + 14
if (num5 != num6):
return False
num7 = a[0] + a[4] + a[6] + a[9]
if (num6 != num7):
return False
return True
for i in itertools.permutations(x):
if check(i):
print(i)
for j in range(4):
print(i[j])
break
输出结果:
(1, 7, 8, 13, 2, 4, 5, 3, 10, 12, 9)
1
7
8
13
感谢观看