C++ 洛谷p1014Cantor表

洛谷p1014简单思路

//记录自己的码字之路
(友情提示:为防止抄袭,本代码已做过一定手脚,请勿复制粘贴,否则后果自负)

题目描述

现代数学的著名证明之一是 Georg Cantor 证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:

1/1, 1/2, 1/3, 1/4, 1/5, …
2/1, 2/2 , 2/3, 2/4, …
3/1 , 3/2, 3/3, …
4/1, 4/2, …
5/1, …

我们以 Z 字形给上表的每一项编号。第一项是 1/1,然后是 1/2,2/1,3/1,2/2,…

输入格式
整数N(1<=N<=10^7)。

输出格式
表中的第 N 项。

简单分析

其实很多人看到这题第一个想法是建立一个二维数组,但是做了半天才发现N的取值范围可以到10^7.。。。
所以我选择用当年小学奥数学到的方法:

  • 先找到N是处在哪两个阶加数之间(阶加数指1+2+3+……+s)
  • 然后把较大阶加数的序号+1记下,标记成sum(聪明的你可能已经发现了sum就是分子分母之和)
  • 最后就是分别写分子(fz)和分母(fm)了,注意sum为偶数奇数时分子和分母排列规则是不一样的!!!
    • 偶数:分子从小到大排,分
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值