洛谷p1014简单思路
//记录自己的码字之路
(友情提示:为防止抄袭,本代码已做过一定手脚,请勿复制粘贴,否则后果自负)
题目描述
现代数学的著名证明之一是 Georg Cantor 证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:
1/1, 1/2, 1/3, 1/4, 1/5, …
2/1, 2/2 , 2/3, 2/4, …
3/1 , 3/2, 3/3, …
4/1, 4/2, …
5/1, …
…
我们以 Z 字形给上表的每一项编号。第一项是 1/1,然后是 1/2,2/1,3/1,2/2,…
输入格式
整数N(1<=N<=10^7)。
输出格式
表中的第 N 项。
简单分析
其实很多人看到这题第一个想法是建立一个二维数组,但是做了半天才发现N的取值范围可以到10^7.。。。
所以我选择用当年小学奥数学到的方法:
- 先找到N是处在哪两个阶加数之间(阶加数指1+2+3+……+s)
- 然后把较大阶加数的序号+1记下,标记成sum(聪明的你可能已经发现了sum就是分子分母之和)
- 最后就是分别写分子(fz)和分母(fm)了,注意sum为偶数奇数时分子和分母排列规则是不一样的!!!
- 偶数:分子从小到大排,分