二分查找算法

有序向量的查找算法

二分查找

将要查找的数和向量中间值比较,若小则往前继续,若大则往后继续。要注意边界取值,左边界变化时应当为:lo=mid+1;右边界变化时应当为hi=mi;
渐进复杂度为0(1.5*logn)
写代码时尽量使用小于号而不是大于号,小于号的次序与排序的次序吻合。
代码:


```cpp
int findd(int a[], int lo, int hi,int e) {
	while (lo < hi) {
		int mid = (lo + hi) >> 1;
		if (e < a[mid])
			hi = mid;
		else if (a[mid] < e)
			lo = mid + 1;
		else
			return mid;
	}
	return -1;
}

### Fibonacci查找
二分查找在向左侧时成本更低,向右侧时成本更高,因此考虑将算法的深度向左侧倾斜。即:
成本低的转向多做,成本高的转向少做。
按照斐波那契数来切分,整体为第n个斐波那契数减一的话,则选定元素的左侧元素个数为第n-1个斐波那契数-1.本质上就是按照当前向量的黄金分割点来分割。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值