TDNN的第一个例子:
input dim=40 name=input
relu-batchnorm-layer name=tdnn1 dim=625
relu-batchnorm-layer name=tdnn2 input=Append(-1,0,1) dim=625
relu-batchnorm-layer name=tdnn3 input=Append(-1,0,1) dim=625
relu-batchnorm-layer name=tdnn4 input=Append(-3,0,3) dim=625
relu-batchnorm-layer name=tdnn5 input=Append(-3,0,3) dim=625
relu-batchnorm-layer name=tdnn6 input=Append(-3,0,3) dim=625
output-layer name=output input=tdnn6 dim=625 max-change=1.5
可以看出整个TDNN共采用6个隐藏层,每个隐藏层的输出节点都是625维。第一个隐藏层接收40维的输入层节点向量,经过625×40维的权重矩阵计算后(