TDNN TDNNF 语音识别

本文详细介绍了TDNN和TDNNF在网络结构中的运用,包括TDNN的实例分析,展示了不同帧偏移的隐藏层设计,以及TDNNF的权重分解和跳层连接机制,旨在降低计算复杂度并缓解梯度消失问题,提高语音识别的性能。
摘要由CSDN通过智能技术生成

TDNN的第一个例子:

  input dim=40 name=input

  relu-batchnorm-layer name=tdnn1 dim=625

  relu-batchnorm-layer name=tdnn2 input=Append(-1,0,1) dim=625

  relu-batchnorm-layer name=tdnn3 input=Append(-1,0,1) dim=625

  relu-batchnorm-layer name=tdnn4 input=Append(-3,0,3) dim=625

  relu-batchnorm-layer name=tdnn5 input=Append(-3,0,3) dim=625

  relu-batchnorm-layer name=tdnn6 input=Append(-3,0,3) dim=625

  output-layer name=output input=tdnn6 dim=625 max-change=1.5

可以看出整个TDNN共采用6个隐藏层,每个隐藏层的输出节点都是625维。第一个隐藏层接收40维的输入层节点向量,经过625×40维的权重矩阵计算后(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值