代码随想录算法训练营第二十八天 | 39. 组合总和、40.组合总和II、131.分割回文串

1. 题目:

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的数字可以无限制重复被选取。

说明:

  • 所有数字(包括 target)都是正整数。
  • 解集不能包含重复的组合。

示例 1:

  • 输入:candidates = [2,3,6,7], target = 7,
  • 所求解集为: [ [7], [2,2,3] ]

示例 2:

  • 输入:candidates = [2,3,5], target = 8,
  • 所求解集为: [ [2,2,2,2], [2,3,3], [3,5] ]

class Solution {

private:

    vector<vector<int>> result;

    vector<int> path;

    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {

        if (sum == target) {

            result.push_back(path);

            return;

        }

        // 如果 sum + candidates[i] > target 就终止遍历

        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {

            sum += candidates[i];

            path.push_back(candidates[i]);

            backtracking(candidates, target, sum, i);

            sum -= candidates[i];

            path.pop_back();

        }

    }

public:

    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {

        result.clear();

        path.clear();

        sort(candidates.begin(), candidates.end()); // 需要排序

        backtracking(candidates, target, 0, 0);

        return result;

    }

};

2. 题目:

给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用一次。

说明: 所有数字(包括目标数)都是正整数。解集不能包含重复的组合。

  • 示例 1:
  • 输入: candidates = [10,1,2,7,6,1,5], target = 8,

结果:[
  [1, 7],
  [1, 2, 5],
  [2, 6],
  [1, 1, 6]
]

## used数组用来标记

class Solution {

private:

    vector<vector<int>> result;

    vector<int> path;

    void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) {

        if (sum == target) {

            result.push_back(path);

            return;

        }

        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {

            // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过

            // used[i - 1] == false,说明同一树层candidates[i - 1]使用过

            // 要对同一树层使用过的元素进行跳过

            if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {

                continue;

            }

            sum += candidates[i];

            path.push_back(candidates[i]);

            used[i] = true;

            backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1,这里是i+1,每个数字在每个组合中只能使用一次

            used[i] = false;

            sum -= candidates[i];

            path.pop_back();

        }

    }

public:

    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {

        vector<bool> used(candidates.size(), false);

        path.clear();

        result.clear();

        // 首先把给candidates排序,让其相同的元素都挨在一起。

        sort(candidates.begin(), candidates.end());

        backtracking(candidates, target, 0, 0, used);

        return result;

    }

};

3. 题目:

给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。

返回 s 所有可能的分割方案。

示例: 输入: "aab" 输出: [ ["aa","b"], ["a","a","b"] ]

class Solution {

private:

    vector<vector<string>> result;

    vector<string> path; // 放已经回文的子串

    void backtracking (const string& s, int startIndex) {

        // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了

        if (startIndex >= s.size()) {

            result.push_back(path);

            return;

        }

        for (int i = startIndex; i < s.size(); i++) {

            if (isPalindrome(s, startIndex, i)) {   // 是回文子串

                // 获取[startIndex,i]在s中的子串

                string str = s.substr(startIndex, i - startIndex + 1);

                path.push_back(str);

            } else {                                // 不是回文,跳过

                continue;

            }

            backtracking(s, i + 1); // 寻找i+1为起始位置的子串

            path.pop_back(); // 回溯过程,弹出本次已经添加的子串

        }

    }

    bool isPalindrome(const string& s, int start, int end) {

        for (int i = start, j = end; i < j; i++, j--) {

            if (s[i] != s[j]) {

                return false;

            }

        }

        return true;

    }

public:

    vector<vector<string>> partition(string s) {

        result.clear();

        path.clear();

        backtracking(s, 0);

        return result;

    }

};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值