几种反函数和差角公式的推导
已知:tan(a+b)=(tana+tanb)/(1-tanatanb)那么令a=arctanm,b=arctann即m=tana,n=tanb代入原式:tan(arctanm+arctann)=(m+n)/(1-mn)两边同取arctan:arctanm+arctann=arctan[(m+n)/(1-mn)]右边裂项得arctann+arctanm=arctan[m/(1-mn)+n/(1-mn)]这一步主要目的是将右边拆成两项和,有不同的拆分法,所以最终得到的公式也不只一种。这里只推
原创
2021-12-12 16:57:26 ·
3634 阅读 ·
2 评论