BNUZ计科一班作业第七题,负数进制

题目:
(选做) 在数的表示中,一个具有重要意义的发明是中华民族创造的位值制,这是世界上独一无二的独特创造。位值制是指符号放在不同的位置可以表示不同的数值,比如,十进制数2020,第一个2表示2000,而第二个2表示20。不同数制系统可以采用不同的基底,例如十进制采用10,二进制采用2,十六进制采用16,Fibonacci进制则采用Fibonacci数作为基等。而事实上也可以用负整数或复数作为基。例如,用复数-1+i作为基,可以表示所有的复数。不同的进制系统,有不同的优势,比如 二进制最容易电路实现,所以现在计算机普遍采用二进制。三进制则可以存储更多的信息,也更符合人类的思维习惯,因为事情不总是只有真和假,还有不真也不假。例如苏联曾经研制过三进制计算机。而采用负数进制则可以避免处理正负号的问题。现在我们就考虑一下负数进制的问题。给定一个十进制的整数n(-231~231-1),你需要把它转换为以-2为基的数,其中数字符号采用{0,1}。例如:十进制1、8、-15对应的-2进制数分别是:1、11000、110001。可以测试更多的数据
-214210953 110111010011001011101110001011
27309684 110111000011100101110110100
-131724826 1000011110100001111000111010
132603035 11000001110001010110111101111
推广:将程序扩展到任意K(|K|<10)进制。

#include <iostream>
using namespace std;
int a[500],k;
//如果为负数的情况:
void func1(int n)
{
    int temp,zz=0;
    while (n)
    {
        temp = n / k;
        if (k * temp > n)temp++;
        a[zz++] = n + (-k) * temp;
        n = temp;
    }
    for (int i = zz - 1; i >= 0; i--) {
        cout << a[i];
    }
}
//如果为正数的情况
void func2(int n)
{
    int temp, zz = 0;
    while (n)
    {
        a[zz++] = n % k;
        n /= k;
    }
    for (int i = zz - 1; i >= 0; i--) {
        cout << a[i];
    }
}
int main()
{
    int n;
    cin >> k >>n;
    if (k < 0) {
        func1(n);
    }
    else {
        func2(n);
    }
}
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值