这是基于上一篇博客来写的
AcWing 849. Dijkstra求最短路 I
这次是对Dijkstra算法进行了堆优化,具体堆优化原理可见y总相关视频
讲解视频
题解代码如下:
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
typedef pair<int,int> PII;
const int N = 1e6+10;
int n,m;
//该题为稀疏图 因为我们采用邻接矩阵来求解
int h[N],w[N],e[N],ne[N],idx;
int dist[N];
bool st[N];
void add(int a,int b,int c)
{
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx++;
}
//本题核心函数
int dijkstra()
{
//先初始化dist数组
memset(dist,0x3f,sizeof dist);
//初始化起点的dist
dist[1] = 0;
//使用c++ stl中的优先队列来实现堆优化,可以选择自己手写堆来优化
priority_queue<PII,vector<PII>,greater<PII>>heap;
//初始化heap
heap.push({0,1});
//开始类似广搜的模板
while(heap.size())
{
auto t = heap.top();
heap.pop();
int distance = t.first;
int ver = t.second;
if(st[ver])continue;
st[ver] = true;
//开始用这个点来扩展
for(int i = h[ver];i!=-1;i=ne[i])
{
int j = e[i];
//现在用这个点来更新其附近可达点的dist数组
if(dist[ver]+w[i]<dist[j])
{
dist[j] = dist[ver]+w[i];
heap.push({dist[j],j});
}
}
}
if(dist[n] == 0x3f3f3f3f)return -1;
return dist[n];
}
int main()
{
cin>>n>>m;
memset(h,-1,sizeof h);
while(m--)
{
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
}
cout<<dijkstra()<<endl;
return 0;
}
本人也就不多对里面的任何细节班门弄斧了,分享一个我在解题过程中遇到的一个小问题
就是关于 priority_queue<PII,vector<PII>,greater<PII>>heap;
我起初将heap.push({0,1});
写成是 heap.push({1,0});
,然后没有报错,但是WA。发现优先队列中pair
为元素的时候,如果你不重新自己写sort
对pair
的自定义排序,那么就默认按照pair
中的一个元素来排序,也就出现了我将节点序号来进行排序,而不是每个节点到初始节点的距离。
可以参考下面这篇文章:
优先队列 以及 sort对 pari 的自定义排序
实现一下优先队列按照pair 的第二关键字排序,就可以按照heap.push({1,0});
来写也能AC啦!