AcWing 850. Dijkstra求最短路 II

这是基于上一篇博客来写的
AcWing 849. Dijkstra求最短路 I
这次是对Dijkstra算法进行了堆优化,具体堆优化原理可见y总相关视频
讲解视频

题解代码如下:

#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
typedef pair<int,int> PII;
const int N = 1e6+10;
int n,m;
//该题为稀疏图 因为我们采用邻接矩阵来求解
int h[N],w[N],e[N],ne[N],idx;
int dist[N];
bool st[N];
void add(int a,int b,int c)
{
    e[idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx++;
}
//本题核心函数
int dijkstra()
{
    //先初始化dist数组
    memset(dist,0x3f,sizeof dist);
    //初始化起点的dist
    dist[1] = 0;
    //使用c++ stl中的优先队列来实现堆优化,可以选择自己手写堆来优化
    priority_queue<PII,vector<PII>,greater<PII>>heap;
    
    //初始化heap
    heap.push({0,1});
    
    //开始类似广搜的模板
    while(heap.size())
    {
        auto t = heap.top();
        heap.pop();
        
        int distance = t.first;
        int ver = t.second;
        
        if(st[ver])continue;
        st[ver] = true;
        
        //开始用这个点来扩展
        for(int i = h[ver];i!=-1;i=ne[i])
        {
            int j = e[i];
            //现在用这个点来更新其附近可达点的dist数组
            if(dist[ver]+w[i]<dist[j])
            {
                dist[j] = dist[ver]+w[i];
                heap.push({dist[j],j});
            }
        }
    }
    
    if(dist[n] == 0x3f3f3f3f)return -1;
    return dist[n];
}
int main()
{
    cin>>n>>m;
    memset(h,-1,sizeof h);
    while(m--)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    cout<<dijkstra()<<endl;
    return 0;
}

本人也就不多对里面的任何细节班门弄斧了,分享一个我在解题过程中遇到的一个小问题
就是关于 priority_queue<PII,vector<PII>,greater<PII>>heap;我起初将heap.push({0,1});写成是 heap.push({1,0});,然后没有报错,但是WA。发现优先队列中pair为元素的时候,如果你不重新自己写sortpair的自定义排序,那么就默认按照pair中的一个元素来排序,也就出现了我将节点序号来进行排序,而不是每个节点到初始节点的距离。
可以参考下面这篇文章:
优先队列 以及 sort对 pari 的自定义排序
实现一下优先队列按照pair 的第二关键字排序,就可以按照heap.push({1,0});来写也能AC啦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值