反向传播算法

  1. 损失函数(Loss function)是定义在单个训练样本上的,也就是就算一个样本的误差,比如我们想要分类,就是预测的类别和实际类别的区别,是一个样本的,用L表示。
  2. 代价函数(Cost function)是定义在整个训练集上面的,也就是所有样本的误差的总和的平均,也就是损失函数的总和的平均,有没有这个平均其实不会影响最后的参数的求解结果。
  3. 总体损失函数(Total loss function)是定义在整个训练集上面的,也就是所有样本的误差的总和。也就是平时我们反向传播需要最小化的值。  

 

 对于L(θ)就是所有损失函数之和。

从这一小部分中去看,把计算梯度分成两个部分

  • 计算∂z/∂w​(Forward pass的部分)
  • 计算∂l​​/∂z ( Backward pass的部分 )

那么,首先计算∂w/∂z​​(Forward pass的部分):

根据求微分原理,forward pass的运算规律就是:

​∂z/∂w1​=x1  ​​∂z​/∂w2=x2​ 这里计算得到的x1​和x2​恰好就是输入的x1​和x2​。

 Backward pass的部分比较复杂,因为我们的l是最后一层

 计算所有激活函数的偏微分,激活函数有很多,这里使用Sigmoid函数为例

这里使用链式法则

 

我们可以想象从另外一个角度看这个事情,现在有另外一个神经元,把forward的过程逆向过来,其中σ′(z)是常数,因为它在向前传播的时候就已经确定了

当有输出值时,假设∂l/∂z′​和∂l/∂z′‘​​是最后一层的隐藏层,也就是就是y1与y2是输出值,那么直接计算就能得出结果

但是如果不是最后一层,计算∂l​/∂z′和∂l/∂z′′​​的话就需要继续往后一直通过链式法则算下去

 对于这个问题,我们要继续计算后面绿色的​∂l​/∂za和∂l/∂zb​​,然后通过继续乘w5​和w6​得到∂l​/∂z′,但是要是​∂l​/∂za和​∂l/∂zb​都不知道,那么我们就继续往后面层计算,一直到碰到输出值,得到输出值之后再反向往输入那个方向走。

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值