53. 最大子数组和【235】== 剑指 Offer 42. 连续子数组的最大和【31】

目录

1.题目:连续子数组的最大和

2.解题思路:

3.代码实现:

 4.心得体会:

5.动态规划思想:

难度等级:简单

上一篇算法:

剑指 Offer 39. 数组中出现次数超过一半的数字【数组】

力扣此题地址:

剑指 Offer 42. 连续子数组的最大和 - 力扣(LeetCode)

1.题目:连续子数组的最大和

输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组中的和的最大值。要求时间复杂度为O(n)

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

2.解题思路:

本题可以看做是一个多阶段决策找最优解的问题,因此可以用典型的动态规划思想来求解。用 dp[ i ] 表示以第 i 个元素结尾的子数组的最大和,那么有以下递推公式:

dp[ i ]=max(dp[ i-1]+data[ i ],data[ i ]).

   

  这个公式的含义是:当以第i-1个数字结尾的子数组中所有数字的和小于0时,把这个负数与第i个数累加,则得到的和比第i个数字本身还要小,所以这种情况下dp[ i ]就是第i个数字本身。反之,如果以第i-1个数字结尾的子数组中所有数字的和大于0,则与第i个数字累加就得到以第i个数字结尾的子数组中所有数字的和。

3.代码实现:

class Solution {
    public int maxSubArray(int[] nums) {
        // 因为后面会使用到 nums 的长度
        // 所以先进行判空操作
        // 如果数组 nums 为空,返回 0
        if(nums.length == 0) return 0;

        // 获取数组的长度
        int n = nums.length;

        // 设置一个数组 dp,长度和数组 nums 长度一致
        // dp[0] 表示以第 0 个元素结尾的最大子数组的和
        // dp[1] 表示以第 1 个元素结尾的最大子数组的和
        // dp[i] 表示以第 i 个元素结尾的最大子数组的和
        int[] dp = new int[n];

        // dp[0] 表示以第 0 个元素结尾的最大子数组的和
        // 初始化 dp[0]
        dp[0] = nums[0];

        // 变量 maxNum 表示数组 dp 中最大的那个值
        // 即 maxNum 表示最大的连续字段和
        int maxNum = dp[0];

        // 从 1 开始遍历数组 nums
        for(int i = 1 ; i < n ;i++){

            // 在遍历的过程中,去获取以第 i 个元素结尾的最大子数组的和
            // 如果以 nums[i-1]结尾的最大字段和为正数
            // 那么以第 i 个元素结尾的最大子数组的和就是自己本身加上以 nums[i-1]结尾的最大字段和
            if(dp[i-1] > 0){
                // dp[i-1] 是正数
                // 所以 dp[i] 的值为 nums[i] 加上 dp[i-1]
                // 因为 正数 + 变量 > 变量
                // dp[i-1] + nums[i] > nums[i]
                dp[i] = dp[i -1] + nums[i];

                // 否则 dp[i-1] 不是正数,为负数或者 0
            }else{
                // 那么 dp[i] 的值为 nums[i]
                // 因为 负数 + 变量 < 变量
                // dp[i -1] + nums[i] < nums[i]
                dp[i] = nums[i];
            }

            // 在更新 dp[i] 的过程中,更新 maxNum 的值
            // 如果此时 dp[i] 的值大于了 maxNum
            if(maxNum < dp[i]){
                // 那么 maxNum 更新为 dp[i]
                maxNum = dp[i];
            }
        }

        // 最后返回 maxNum
        return maxNum;
    }
}

无注解版:

class Solution {
    public int maxSubArray(int[] nums) {
        if(nums.length == 0) return 0;
        int n = nums.length;
        int[] dp = new int[n];
        dp[0] = nums[0];
        int maxNum = dp[0];

        for(int i = 1 ; i < n ;i++){
            if(dp[i-1] > 0){
                dp[i] = dp[i -1] + nums[i];
            }else{
                dp[i] = nums[i];
            }
            if(maxNum < dp[i]){
                maxNum = dp[i];
            }
        }
        return maxNum;
    }
}

 4.心得体会:

一些感想:

刷了一些题之后,我觉得刷算法要先刷思路,思路能懂的前提下再去看代码,或者通过看代码辅助理解思路也可以。要先会说怎么解,然后再写代码。

思路:

讲真的,这题在没有看题解之前,我头皮发麻!这题用的是动态规划的思想,将大问题变成一个个小问题。在没有看题解之前,我满脑子是想如何去找出那一块连续的子数组呢?想了半天,想的是先整个数组元素加起来,然后数组前后依次去掉来比较数值大小,最终得到一个最大的数。看了题解之后茅塞顿开,用动态规划的思想会更容易。

说实话,动态规划思想我并不清楚,遇到这题我现学现用的,去b站看了几个视频学了一下动态规划思想。我觉得刷算法就是这样,哪里不行补哪里,由一道题去延伸学习相关的知识点,最后补的多了,再梳理一遍,自然就掌握的多了。

实现:

起初看题解思路还有点看不懂,是后面看了代码之后,才理解了题解思路。

5.动态规划思想:

动态规划的实质是分治思想和解决冗余,因此动态规划是一种将问题实例分析为更小的、相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略。
   

动态规划所针对的问题有一个显著的特征,即它对应的子问题树中的子问题呈现大量的重复。动态规划的关键在于,对于重复的子问题,只在第一次遇到时求解,并把答案保存起来,让以后再遇到时直接引用,不必要重新求解。

写在最后:

今天看到了一句很有意思的话,想分享给大家,大家学习之外也能开心一下:

    

你可不可以成为我的main函数,做我此生有且仅有一个入口;我愿为自己加上private,在你的class中只有你能调用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值