主要用例子来说一下去重的逻辑
这段代码实现了组合求和问题中的去重逻辑。当处理排序后的数组(如[1,2,2,2,5])时,通过判断当前元素与前一个元素是否相同,并且前一个元素未被使用(used[i-1]==0),来跳过重复组合。这种"树层去重"方法确保在递归过程中不会产生相同的组合,比如避免重复使用相同的2来构成[1,2,2]。算法通过回溯遍历所有可能的组合,仅保留满足target=5且不重复的有效解。
// 去重逻辑
if(i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == 0)
假设是candidates=[1,2,2,2,5],target = 5
第一次运行
第一层
used = [1,0,0,0,0]
candidates=[1,2,2,2,5]
i = 0
pp = [1]
sum = 1;
进入第二层
used = [1,1,0,0,0]
candidates=[1,2,2,2,5]
i = 1
pp = [1,2]
sum = 3;
进入第三层
used = [1,1,1,0,0] //这里就涉及到上面的去重逻辑,因为used[i - 1] == 1,表明前面的正在使用
candidates=[1,2,2,2,5]
i = 2
pp = [1,2,2]
sum = 5
进入到第四层,此时因为已经满足条件了,就将满足target的写入到tt中,返回到第三层
进行恢复操作
used = [1,1,0,0,0]
candidates=[1,2,2,2,5]
pp = [1,2]
sum = 3
此时,将第三层的i + 1(i = 3),执行for循环,此时判断当前的candidates[i]是否与candidates[i-1]相同,如果相同说明出现了重复元素,如果used[i-1] == 0表明前面相同的那个元素已经使用完了,那么继续执行for循环,避免我们所拿到的数组是重复的。
以上就是树层去重!!!!!
完整代码
class Solution {
public:
int sum = 0;
vector<int> pp;
vector<vector<int>> tt;
void backtracking(vector<int>& candidates, int target,int k,vector<int> &used)
{
if(sum > target) return;
else if(sum == target)
{
tt.push_back(pp);
return;
}
for(int i = k;i < candidates.size();i++)
{
// 去重逻辑
if(i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == 0)
{
continue;
}
pp.push_back(candidates[i]);
sum += candidates[i];
used[i] = 1;
backtracking(candidates,target,i+1,used);
pp.pop_back();
sum -= candidates[i];
used[i] = 0;
}
}
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<int> used(candidates.size(),0); // 去重数组
sort(candidates.begin(),candidates.end());
backtracking(candidates,target,0,used);
return tt;
}
};